Original Research

DOI: 10.4244/EIJ-D-24-00055

Vascular response following implantation of the third-generation drug-eluting resorbable coronary magnesium scaffold: an intravascular imaging analysis of the BIOMAG-I first-in-human study

Masaru Seguchi1, MD, PhD; Alp Aytekin1, MD, PhD; Erion Xhepa1, MD, PhD; Michael Haude2, MD, PhD; Adrian Wlodarczak3, MD; René J. van der Schaaf4, MD, PhD; Jan Torzewski5, MD, MPhil; Bert Ferdinande6, MD; Javier Escaned7, MD, PhD; Juan F. Iglesias8, MD; Johan Bennett9, MD, PhD; Gabor G. Toth10, MD, PhD; Ralph Toelg11,12,13, MD; Marcus Wiemer14, MD; Göran Olivecrona15, MD, PhD; Paul Vermeersch16, MD, PhD; Ron Waksman17, MD; Hector M. Garcia-Garcia17, MD, MSc, PhD; Michael Joner1, MD

Abstract

BACKGROUND: The 12-month outcomes of BIOMAG-I − the first-in-human study investigating the third-generation drug-eluting resorbable magnesium scaffold (DREAMS 3G) − showed promising results regarding clinical outcomes and late lumen loss.

AIMS: The current study aimed to investigate vascular healing parameters assessed by optical coherence tomography (OCT) and intravascular ultrasound (IVUS), focusing on strut visibility, vessel and scaffold areas, and neointimal growth patterns.

METHODS: This is a BIOMAG-I substudy including patients with available serial OCT and IVUS data. We conducted a frame-based analysis of OCT findings in conjunction with IVUS-derived vessel and scaffold areas, evaluating the qualitative and quantitative aspects of vascular healing.

RESULTS: Among the 116 patients enrolled in this trial, 56 patients treated with DREAMS 3G were included in the analysis. At 12 months, OCT imaging revealed that 99.0% of the struts were invisible, and no malapposed struts were depicted. While the vessel area showed no significant difference between the timepoints, the minimum lumen area significantly decreased from post-percutaneous coronary intervention to 6 months (6.88 mm2 to 4.75 mm2; p<0.0001), but no significant changes were observed between 6 and 12 months. Protruding neointimal tissue (PNT) − a unique neointimal presentation observed following resorbable magnesium scaffold implantation − was observed in 89.3% of the study patients at 12 months, and its area exhibited a 47.4% decrease from 6 to 12 months.

CONCLUSIONS: This imaging substudy revealed that, at 12-month follow-up, virtually all struts of the DREAMS 3G scaffold became invisible, without evident malapposition. The vascular healing response to DREAMS 3G implantation also appeared favourable up to 12 months, which is indicated by advanced strut degradation and spontaneous regressing PNT between 6 and 12 months.

Sign in to read
the full article

Forgot your password?
No account yet?
Sign up for free!

Create my pcr account

Join us for free and access thousands of articles from EuroIntervention, as well as presentations, videos, cases from PCRonline.com

Volume 20 Number 18
Sep 16, 2024
Volume 20 Number 18
View full issue


Key metrics

Suggested by Cory

10.4244/EIJV16I11A162 Dec 4, 2020
Magnesium-based bioresorbable scaffolds in STEMI. The quest for the optimal bioresorption balance
Gonzalo N and McInerney A
free

Image – Interventional flashlight

10.4244/EIJ-D-18-00501 Jul 19, 2019
“Bumpy” neointima: the fingerprint of bioabsorbable magnesium scaffold resorption
Alfonso F et al
free

Translational research

10.4244/EIJ-D-22-00718 Jun 5, 2023
Preclinical evaluation of the degradation kinetics of third-generation resorbable magnesium scaffolds
Seguchi M et al
free

Short report

10.4244/EIJ-D-19-00421 Jan 20, 2021
Target lesion revascularisation of bioresorbable metal scaffolds: a case series study and literature review
Ortega-Paz L et al
free
Trending articles
309.93

State-of-the-Art Review

10.4244/EIJ-D-21-00695 Nov 19, 2021
Transcatheter treatment for tricuspid valve disease
Praz F et al
free
166.7

Expert review

10.4244/EIJ-D-21-00690 May 15, 2022
Crush techniques for percutaneous coronary intervention of bifurcation lesions
Moroni F et al
free
92.2

State-of-the-Art Review

10.4244/EIJ-D-20-01296 Aug 27, 2021
Management of cardiogenic shock
Thiele H et al
free
76

State-of-the-Art

10.4244/EIJ-D-23-00840 Sep 2, 2024
Aortic regurgitation: from mechanisms to management
Baumbach A et al
free
72.85

State-of-the-Art

10.4244/EIJ-D-24-00386 Feb 3, 2025
Mechanical circulatory support for complex, high-risk percutaneous coronary intervention
Ferro E et al
free
58.3

Clinical research

10.4244/EIJ-D-23-00344 Sep 18, 2023
Clinical outcomes of TAVI with the Myval balloon-expandable valve for non-calcified aortic regurgitation
Sanchez-Luna JP et al
free
56.65

Clinical research

10.4244/EIJ-D-20-01155 Oct 20, 2021
A deep learning algorithm for detecting acute myocardial infarction
Liu W et al
free
33.9

CLINICAL RESEARCH

10.4244/EIJ-D-17-00381 Oct 11, 2017
Stent malapposition and the risk of stent thrombosis: mechanistic insights from an in vitro model
Foin N et al
free
33.65

State-of-the-Art

10.4244/EIJ-D-23-00606 Jan 1, 2024
Targeting inflammation in atherosclerosis: overview, strategy and directions
Waksman R et al
free
X

The Official Journal of EuroPCR and the European Association of Percutaneous Cardiovascular Interventions (EAPCI)

EuroPCR EAPCI
PCR ESC
Impact factor: 7.6
2023 Journal Citation Reports®
Science Edition (Clarivate Analytics, 2024)
Online ISSN 1969-6213 - Print ISSN 1774-024X
© 2005-2025 Europa Group - All rights reserved