Image – Interventional flashlight

DOI: 10.4244/EIJ-D-18-01212

Balloon pulmonary angioplasty for the treatment of chronic thromboembolic pulmonary hypertension

Lorenz Räber1, MD; Yasushi Ueki1, MD; Irene M. Lang2, MD

Figure 1. Imaging of left A10 before and after balloon angioplasty. Panels A-C illustrate angiograms. Panels D and E show OCT images in the planes highlighted in panels A and C.

A 65-year-old dyspnoeic male was diagnosed with chronic thromboembolic pulmonary hypertension (CTEPH) and a mean pulmonary arterial pressure of 45 mmHg, cardiac index of 2.4 L/min/m2, and pulmonary vascular resistance of 560 dyn·s·cm–5. The interdisciplinary PH board classified the patient’s CTEPH as technically operable with a poor risk-benefit ratio. An alternative mechanical treatment is balloon pulmonary angioplasty (BPA), a recently refined percutaneous technique that is emerging in Europe1. Figure 1A shows direct injection of left A10 during the patient`s first BPA session, depicting a focal bifurcational lesion. Optical coherence tomography showed a typical chanelled organised thrombus (Figure 1D, Moving image 1). After a single 8 atm inflation of a 4/20 mm MAVERICK™ balloon (Boston Scientific, Marlborough, MA, USA) (Figure 1B), angiography demonstrated adequate expansion of the lesion (Figure 1C). OCT immediately after balloon angioplasty (Figure 1E, Moving image 2) documented eccentric compression of obstructive material, without medial dissection (Figure 1D, arrows flanking the OCT catheter point to the structures displaced between Figure 1D and Figure 1E). “Breaking webs without dissection of the media” is the principle of BPA, and distinguishes this technique from coronary balloon angioplasty. Sparing the media is an interventional goal that is not always met, but may be achieved by using undersized balloons2. The fact that CTEPH is a disease of the lumen rather than a disease of the vessel wall itself may be a further reason for the lack of restenosis after BPA. This case illustrates the mechanical concept of BPA breaking and displacing intravascular webs, thus restoring normal flow and vessel function.

Conflict of interest statement

The authors have no conflicts of interest to declare.

Supplementary data

To read the full content of this article, please download the PDF.

Moving image 1. OCT before balloon angioplasty showing organised thrombus and lesional negative vascular remodelling.

Moving image 2. OCT immediately after balloon angioplasty illustrates compression of obstructive material without medial dissection.

Volume 15 Number 9
Oct 4, 2019
Volume 15 Number 9
View full issue


Key metrics

Suggested by Cory

10.4244/EIJV12SXA8 May 16, 2016
Percutaneous treatment of chronic thromboembolic pulmonary hypertension (CTEPH)
Muller DW and Liebetrau C
free

Clinical Research

10.4244/EIJ-D-21-00230 Jan 28, 2022
Balloon pulmonary angioplasty in chronic thromboembolic pulmonary hypertension: a multicentre registry
Darocha S et al
free
Trending articles
318.1

State-of-the-Art Review

10.4244/EIJ-D-21-00695 Nov 19, 2021
Transcatheter treatment for tricuspid valve disease
Praz F et al
free
116.75

State-of-the-Art

10.4244/EIJ-D-24-00066 Apr 21, 2025
Management of complications after valvular interventions
Bansal A et al
free
108.3

Viewpoint

10.4244/EIJ-E-22-00007 May 15, 2022
TAVI at 20: how a crazy idea led to a clinical revolution
Eltchaninoff H et al
free
91.6

Image – Interventional flashlight

10.4244/EIJ-D-22-00344 Aug 5, 2022
First dedicated transcatheter leaflet splitting device: the ShortCut device
Tchétché D et al
free
72.4

State-of-the-art

10.4244/EIJ-D-22-00627 Feb 6, 2023
Left atrial appendage occlusion
Holmes D et al
free
68.9

State-of-the-Art

10.4244/EIJ-D-24-00992 Sep 15, 2025
Antithrombotic therapy in complex percutaneous coronary intervention
Castiello D et al
free
60.65

Clinical research

10.4244/EIJ-D-20-01155 Oct 20, 2021
A deep learning algorithm for detecting acute myocardial infarction
Liu W et al
free
49.55

CLINICAL RESEARCH

10.4244/EIJ-D-17-00962 Apr 6, 2018
A new optical coherence tomography-based calcium scoring system to predict stent underexpansion
Fujino A et al
free
43.45

State-of-the-Art Review

10.4244/EIJ-D-21-00145 Sep 20, 2021
Robotics, imaging, and artificial intelligence in the catheterisation laboratory
Beyar R et al
free
X

PCR
Impact factor: 9.5
2024 Journal Citation Reports®
Science Edition (Clarivate Analytics, 2025)
Online ISSN 1969-6213 - Print ISSN 1774-024X
© 2005-2025 Europa Group - All rights reserved