Editorial

DOI: 10.4244/EIJ-E-23-00063

Strategies to minimise bleeding secondary to large-bore vascular access complications: an ounce of prevention is worth a pound of cure

Thomas Pilgrim1, MD, MSc; Annette Maznyczka1, MBChB, BSc, MSc, PhD, MRCP

Vascular access site complications account for the majority of bleeding complications after transcatheter aortic valve implantation (TAVI) and are associated with increased morbidity and mortality1. The marked decrease in vascular access site complications over recent years reflects a combination of accurate preprocedural computed tomographic mapping of the iliofemoral axis, refined technology of delivery catheters and vascular closure devices (VCD), sophisticated puncture techniques, and reliable bailout strategies built on the collective experience of the interventional community2.

We are in a process of streamlining, optimising and economising TAVI. Therefore, a systematic and versatile algorithm for large-bore vascular access closure that integrates a cascade of safety nets is of interest. The level of complexity of large-bore vascular access and closure is minimised by being broken down into individual steps amenable to standardisation (Figure 1). Procedural planning anticipates the risk of complications, without having one’s back against the wall. Computed tomography angiographic mapping of the access route considers the distance from the puncture site to the vessel wall, vessel diameter, tortuosity, distribution of calcifications, and the location of the femoral bifurcation...

Sign in to read
the full article

Forgot your password?
No account yet?
Sign up for free!

Create my pcr account

Join us for free and access thousands of articles from EuroIntervention, as well as presentations, videos, cases from PCRonline.com

Volume 20 Number 6
Mar 18, 2024
Volume 20 Number 6
View full issue


Key metrics

On the same subject

Original Research

10.4244/EIJ-D-23-00725 Mar 18, 2024
A systematic algorithm for large-bore arterial access closure after TAVI: the TAVI-MultiCLOSE study
Rosseel L et al

Clinical research

10.4244/EIJ-D-23-00725 Nov 19, 2023
A systematic algorithm for large-bore arterial access closure after TAVI: the TAVI-MultiCLOSE study
Rosseel L et al

10.4244/EIJV15I15A237 Feb 7, 2020
Do we need alternative access in TAVR anymore?
Ben Ali W et al
free

CLINICAL RESEARCH

10.4244/EIJV11I6A137 Oct 20, 2015
Comparison of suture-based vascular closure devices in transfemoral transcatheter aortic valve implantation
Barbanti M et al
free
Trending articles
338.63

State-of-the-Art Review

10.4244/EIJ-D-21-00904 Apr 1, 2022
Antiplatelet therapy after percutaneous coronary intervention
Angiolillo D et al
free
295.45

Expert consensus

10.4244/EIJ-D-21-00898 Sep 20, 2022
Intravascular ultrasound guidance for lower extremity arterial and venous interventions
Secemsky E et al
free
226.03

State-of-the-Art Review

10.4244/EIJ-D-21-00426 Dec 3, 2021
Myocardial infarction with non-obstructive coronary artery disease
Lindahl B et al
free
209.5

State-of-the-Art Review

10.4244/EIJ-D-21-01034 Jun 3, 2022
Management of in-stent restenosis
Alfonso F et al
free
168.4

Expert review

10.4244/EIJ-D-21-00690 May 15, 2022
Crush techniques for percutaneous coronary intervention of bifurcation lesions
Moroni F et al
free
149.53

State-of-the-Art

10.4244/EIJ-D-22-00776 Apr 3, 2023
Computed tomographic angiography in coronary artery disease
Serruys PW et al
free
103.48

Expert consensus

10.4244/EIJ-E-22-00018 Dec 4, 2023
Definitions and Standardized Endpoints for Treatment of Coronary Bifurcations
Lunardi M et al
free
X

The Official Journal of EuroPCR and the European Association of Percutaneous Cardiovascular Interventions (EAPCI)

EuroPCR EAPCI
PCR ESC
Impact factor: 6.2
2022 Journal Citation Reports®
Science Edition (Clarivate Analytics, 2023)
Online ISSN 1969-6213 - Print ISSN 1774-024X
© 2005-2024 Europa Group - All rights reserved