DOI:

Renal artery intervention

Thomas Zeller*, MD, FESC

Renal artery stenosis may cause or deteriorate arterial hypertension and/or renal insufficiency. Technical improvements of diagnostic and interventional endovascular tools have led to a more widespread use of endoluminal renal artery revascularisation and extension of the indications for this type of therapy. The first renal artery balloon angioplasties were performed by Felix Mahler in Berne and Andreas Gruentzig in Zurich in 19771,2. Until the beginning of the 1990’s balloon angioplasty was the only method of percutaneous treatment of renal artery stenosis (RAS). Results were satisfying for stenoses caused by fibro-muscular dysplasia and atherosclerotic stenosis of the renal artery trunk, but limited for ostial atherosclerotic lesions, the most common manifestation of renal artery stenosis3,4. The introduction of stenting has revolutionised percutaneous renal revascularisation. Following promising single centre reports, two randomised studies proved the superiority of stenting over conventional balloon angioplasty3,5 in the treatment of atherosclerotic ostial renal artery stenosis. Nowadays using pre-mounted low profile stent devices atherosclerotic RAS can be treated successfully in almost all cases with restenosis rates ranging from 0 to 23% depending on the diameter of the renal artery5-9. Even if the recent randomised STAR and ASTRAL trials10,11 did not show any benefit of renal artery stenosis revascularisation over medical therapy there is nonetheless evidence that stenting of haemodynamically relevant atherosclerotic renal artery stenosis has an impact on blood pressure control, renal function, and left ventricular hypertrophy. A proper patient selection and a safe interventional technique are the key elements of a clinically successful outcome of the patient following the procedure. In particular, patients with a short history of deterioration of renal function might have the largest benefit from intervention. In patients with an advanced stage of renal failure the indication for stenting of atherosclerotic renal artery stenosis must be determined individually for each patient considering the overall prognosis. The online version of this manuscript introduces step-by-step into interventional treatment techniques for renal artery stenoses, from the simple guiding catheter technique to the modified “no-touch” technique (Figure 1a-e) or the telescope technique to access renal arteries with steep angulations from the femoral artery.

Figure 1. Stenting of right renal artery using a modified “no-touch” technique: a) Severe right RAS b) One 0.014” wire each in the renal artery and the suprarenal aorta c) Placement of the stent. d) Release of the stent, aortic wire still in place e) Final result.


References

Volume 5 Number 8
Apr 12, 2010
Volume 5 Number 8
View full issue


Key metrics

Suggested by Cory

Research Correspondence

10.4244/EIJ-D-23-01030 May 10, 2024
Procedural trends and event rates in severe renovascular hypertension
Earle WB et al
free

CLINICAL RESEARCH

10.4244/EIJ-D-16-00697 Jun 2, 2017
Drug-eluting stents versus bare metal stents for the prevention of restenosis in patients with renovascular disease
Bradaric C et al
free

10.4244/EIJV14I12A225 Dec 20, 2018
Renal artery denervation: a lot done and more to do
Sharif F
free

10.4244/EIJV9SRA14 May 21, 2013
Renal denervation: tips and tricks to perform a technically successful procedure
Bertog S et al
free

10.4244/EIJV9I9A173 Jan 20, 2014
The quickening path ahead for renal denervation therapies
Kirtane AJ and Leon MB
free

10.4244/EIJV9SRA12 May 21, 2013
Challenging anatomy, how to treat or not to treat?
Zeller T et al
free
Trending articles
318.3

State-of-the-Art Review

10.4244/EIJ-D-21-00695 Nov 19, 2021
Transcatheter treatment for tricuspid valve disease
Praz F et al
free
116.85

State-of-the-Art

10.4244/EIJ-D-24-00066 Apr 21, 2025
Management of complications after valvular interventions
Bansal A et al
free
108.3

Viewpoint

10.4244/EIJ-E-22-00007 May 15, 2022
TAVI at 20: how a crazy idea led to a clinical revolution
Eltchaninoff H et al
free
91.6

Image – Interventional flashlight

10.4244/EIJ-D-22-00344 Aug 5, 2022
First dedicated transcatheter leaflet splitting device: the ShortCut device
Tchétché D et al
free
72.15

State-of-the-art

10.4244/EIJ-D-22-00627 Feb 6, 2023
Left atrial appendage occlusion
Holmes D et al
free
68.9

State-of-the-Art

10.4244/EIJ-D-24-00992 Sep 15, 2025
Antithrombotic therapy in complex percutaneous coronary intervention
Castiello D et al
free
49.55

CLINICAL RESEARCH

10.4244/EIJ-D-17-00962 Apr 6, 2018
A new optical coherence tomography-based calcium scoring system to predict stent underexpansion
Fujino A et al
free
42.95

State-of-the-Art Review

10.4244/EIJ-D-21-00145 Sep 20, 2021
Robotics, imaging, and artificial intelligence in the catheterisation laboratory
Beyar R et al
free
X

PCR
Impact factor: 9.5
2024 Journal Citation Reports®
Science Edition (Clarivate Analytics, 2025)
Online ISSN 1969-6213 - Print ISSN 1774-024X
© 2005-2025 Europa Group - All rights reserved