Image – Interventional flashlight

DOI: 10.4244/EIJ-D-18-00512

A new practical anatomical classification for left atrial appendage closure

Luis Cressa1, MD; David Hildick-Smith2, MD; Alejandro Herrara3, BSc; Fabian Ruiz4, MD

Abstract

Figure 1. Step-by-step classification using LAA images from TEE, angioCT and angiography. A) TEE 135º view showing measurement of the landing zone and depth diameter. RAO 20º caudal 20º angiography (B) and angioCT axial and coronal views (C) in which the landing zone diameter can be obtained using either shorter and larger diameter media or the perimeter-derived diameter (PDD). D) B 2 S LAA sample in which the depth diameter is greater but less than double that of the landing zone diameter and so corresponds to B, has two lobes and so corresponds to 2, and the deeper useful lobe is superior. E) Catheter placed in the superior lobe perpendicular to the landing zone in the same B 2 S LAA. F) An angioCT B 1 M1 LAA sample with a distal inferior lobe with an early 90º angulation. G) The three variables and step-by-step positions forming the classification.

Left atrial appendage (LAA) is one of the major sources of thrombus formation in atrial fibrillation1. It presents a wide range of anatomical morphologies23.

The current morphological classification is subjective, comparing LAA with shapes such as Broccoli, Windsock, Chicken wing, Cactus and others. Even if some shapes have an impact in terms of prediction of procedure success4, an objective classification that allows planning the procedure better is needed. Additionally, an objective classification will avoid observer-dependent mistakes. Furthermore, some challenging shapes defined as rare are not included in the current classification.

The aim is to include all possible morphologies in a step-by-step classification with images obtained by transoesophageal echocardiography (TEE), angioCT and angiography using the landing zone diameter, depth, number of lobes and the dominant/useful lobe (Figure 1A-Figure 1C). We propose an intuitive classification which will have an impact on the procedure planning (Figure 1G). First, allocating a letter depending on the relationship between the landing zone and the useful depth diameter: “A” when the depth is more than twice that of the landing zone, “B” when the depth is less than double, and “C” when the landing zone is greater than the depth. Nitinol cage devices need at least the same depth as the landing zone diameter; therefore, A and B types will be more suitable (Figure 1D, Figure 1E). C types will be more suitable for plug devices. Second, a number will be allocated depending on the number of lobes, and third another letter will be allocated depending on which is the deeper/useful lobe for placing the catheter and implanting the device (deeper is not always the most useful lobe): “S” for superior lobe, “I” for inferior, and “M” when the deeper/more useful lobe is medial with three possibilities – absence of other lobes “M”, “M1” when the distal lobe starts with an early (less than 20 mm from the landing zone) 90º angle (Figure 1F), and “M2” when the LAA has two lobes with early bifurcation (less than 15 mm from the ostium) in which none of the lobes is useful. In an LAA with a deeper/useful superior lobe, an inferior/posterior transseptal puncture will be helpful in order to reach it and for manoeuvring the catheter inside the LAA (Figure 1E); when a useful/deeper lobe is inferior (“I”), a medial transseptal puncture will be more useful.

This new classification makes the description of LAA simpler, a factor which is strategically significant when facing the choice of closure technique, choosing a strategy and assessing its results. It will also be useful for criteria unification in further trials.

Conflict of interest statement

L. Cressa receives fees/honoraria from Boston Scientific and Abbott Vascular, and is a consultant for Boston Scientific. The other authors have no conflicts of interest to declare.

Volume 15 Number 1
May 20, 2019
Volume 15 Number 1
View full issue


Key metrics

Suggested by Cory

Image – Interventional flashlight

10.4244/EIJ-D-21-00624 Jun 3, 2022
Percutaneous left atrial appendage closure in a surgically ligated left atrial appendage
Wong I et al
free

Clinical Research

10.4244/EIJ-D-21-00555 Apr 1, 2022
Computed tomography-based selection of transseptal puncture site for percutaneous left atrial appendage closure
Fukutomi M et al
free
Trending articles
312.73

State-of-the-Art Review

10.4244/EIJ-D-21-00695 Nov 19, 2021
Transcatheter treatment for tricuspid valve disease
Praz F et al
free
241.95

State of the art

10.4244/EIJ-D-21-01117 Sep 20, 2022
Recanalisation of coronary chronic total occlusions
Di Mario C et al
free
153.78

State-of-the-Art

10.4244/EIJ-D-22-00776 Apr 3, 2023
Computed tomographic angiography in coronary artery disease
Serruys PW et al
free
110.9

Clinical research

10.4244/EIJ-D-20-00130 Oct 9, 2020
Double-kissing culotte technique for coronary bifurcation stenting
Toth GG et al
free
105.53

Expert consensus

10.4244/EIJ-E-22-00018 Dec 4, 2023
Definitions and Standardized Endpoints for Treatment of Coronary Bifurcations
Lunardi M et al
free
77.75

State-of-the-Art

10.4244/EIJ-D-23-00840 Sep 2, 2024
Aortic regurgitation: from mechanisms to management
Baumbach A et al
free
43.4

Clinical research

10.4244/EIJ-D-23-00590 Dec 4, 2023
Prognostic impact of cardiac damage staging classification in each aortic stenosis subtype undergoing TAVI
Nakase M et al
free
34.75

State-of-the-Art

10.4244/EIJ-D-23-00606 Jan 1, 2024
Targeting inflammation in atherosclerosis: overview, strategy and directions
Waksman R et al
free
X

The Official Journal of EuroPCR and the European Association of Percutaneous Cardiovascular Interventions (EAPCI)

EuroPCR EAPCI
PCR ESC
Impact factor: 7.6
2023 Journal Citation Reports®
Science Edition (Clarivate Analytics, 2024)
Online ISSN 1969-6213 - Print ISSN 1774-024X
© 2005-2025 Europa Group - All rights reserved