Clinical research

DOI: 10.4244/EIJ-D-23-00611

Angiography‑based quantitative flow ratio for functional assessment of intracranial atherosclerotic disease

Kangmo Huang1, PhD; Haotao Li2, MD, PhD; Shengxian Tu3, PhD; Juan Du1, MD, PhD; Weihe Yao1, PhD; Rui Liu1, MD, PhD; Yunfei Han1, MD, PhD; Ruidong Ye1, MD, PhD; Shiteng Suo3,4, PhD; Wusheng Zhu1, MD, PhD; Xinfeng Liu1,5, MD, PhD

Abstract

BACKGROUND: Intracranial atherosclerotic stenosis (ICAS), an important cause of stroke, is associated with a considerable stroke recurrence rate despite optimal medical treatment. Further assessment of the functional significance of ICAS is urgently needed to enable individualised treatment and, thus, improve patient outcomes.

AIMS: We aimed to evaluate the haemodynamic significance of ICAS using the quantitative flow ratio (QFR) technique and to develop a risk stratification model for ICAS patients.

METHODS: Patients with moderate to severe stenosis of the middle cerebral artery, as shown on angiography, were retrospectively enrolled. For haemodynamic assessment, the Murray law-based QFR (μQFR) was performed on eligible patients. Multivariate logistic regression models composed of μQFR and other risk factors were developed and compared for the identification of symptomatic lesions. Based on the superior model, a nomogram was established and validated by calibration.

RESULTS: Among 412 eligible patients, symptomatic lesions were found in 313 (76.0%) patients. The μQFR outperformed the degree of stenosis in discriminating culprit lesions (area under the curve [AUC]: 0.726 vs 0.631; DeLong test p-value=0.001), and the model incorporating μQFR and conventional risk...

Sign in to read
the full article

Forgot your password?
No account yet?
Sign up for free!

Create my pcr account

Join us for free and access thousands of articles from EuroIntervention, as well as presentations, videos, cases from PCRonline.com

Volume 20 Number 5
Mar 4, 2024
Volume 20 Number 5
View full issue


Key metrics

On the same subject

Editorial

10.4244/EIJ-E-23-00031 Aug 7, 2023
Quantitative flow ratio and cardiovascular risk: paralleling the FFR ischaemic continuum
Kern M
free

Short report

10.4244/EIJ-D-18-00955 Aug 6, 2021
Quantitative flow ratio for functional evaluation of in-stent restenosis
Liontou C et al
free

Clinical Research

10.4244/EIJ-D-21-00425 Feb 18, 2022
Reproducibility of quantitative flow ratio: the QREP study
Westra J et al
free

Research Correspondence

10.4244/EIJ-D-24-00144 Aug 19, 2024
Diagnostic accuracy of quantitative flow ratio in patients with arrhythmias
Milzi A et al
Trending articles
211.3

State-of-the-Art Review

10.4244/EIJ-D-21-01034 Jun 3, 2022
Management of in-stent restenosis
Alfonso F et al
free
173.03

Focus article

10.4244/EIJY19M08_01 Jan 17, 2020
EHRA/EAPCI expert consensus statement on catheter-based left atrial appendage occlusion – an update
Glikson M et al
free
168.95

Translational research

10.4244/EIJ-D-21-00824 May 15, 2022
Bench test and in vivo evaluation of longitudinal stent deformation during proximal optimisation
Toth GG et al
free
151.18

State-of-the-Art

10.4244/EIJ-D-22-00776 Apr 3, 2023
Computed tomographic angiography in coronary artery disease
Serruys PW et al
free
76.65

State-of-the-Art

10.4244/EIJ-D-23-00840 Sep 2, 2024
Aortic regurgitation: from mechanisms to management
Baumbach A et al
free
X

The Official Journal of EuroPCR and the European Association of Percutaneous Cardiovascular Interventions (EAPCI)

EuroPCR EAPCI
PCR ESC
Impact factor: 7.6
2023 Journal Citation Reports®
Science Edition (Clarivate Analytics, 2024)
Online ISSN 1969-6213 - Print ISSN 1774-024X
© 2005-2024 Europa Group - All rights reserved