Short report

DOI: 10.4244/EIJ-D-18-00955

Quantitative flow ratio for functional evaluation of in-stent restenosis

Catherine Liontou1, MD, PhD; Hernán Mejía-Rentería1, MD; Francesco Maria Lauri1, MD; Sonoka Goto1,2, MD; Hyun-Jong Lee3, MD, PhD; Masafumi Nakayama2,4, MD, PhD; Alicia Quirós5, PhD; Fernando Macaya1, MD; Nieves Gonzalo1, MD, PhD; Iván J. Núñez-Gil1, MD, PhD; Pablo Salinas1, MD, PhD; Maria Del Trigo1, MD, PhD; Javier Escaned1, MD, PhD

Introduction

Coronary angiography is the most common diagnostic tool to assess in-stent restenosis (ISR) severity, both in clinical practice and in trials1. However, given its poor ability to depict the relevance of functional stenosis, fractional flow reserve (FFR) has been proposed as the reference standard to ascertain functional ISR severity2. More recently, quantitative flow ratio (QFR) has been validated in de novo lesions as an angiography-based approach to functional stenosis characterisation that does not require intracoronary instrumentation3. We investigated the diagnostic performance of QFR in ISR lesions, using FFR as the reference standard.

Methods

This was a multicentre, international, retrospective, blinded study, enrolling patients from three hospitals in three countries (Hospital Clínico San Carlos, Spain; Toda Chuo General Hospital, Japan; and Sejong General Hospital, Republic of Korea). The study population consisted of a group of ISR patients in whom FFR was used to guide coronary revascularisation. Patients with ISR defined as ≥50% diameter stenosis (DS) within the stent, or within 5 mm from the stent edges, luminal narrowing as judged visually were considered for the study. Details regarding data collection and analysis are available in Supplementary Appendix 1.

Results

QFR analysis was performed in 78 vessels (73 patients) with ISR, all investigated with FFR (Figure 1). Supplementary Appendix 2 and Supplementary Table 1 show details of patient demographics and clinical characteristics. Angiographic and physiological variables are shown in Table 1. Stenosis severity was intermediate both in terms of angiography (mean %DS: 51±9%) and FFR (mean value: 0.79±0.09).

Figure 1. Case example of QFR analysis of intermediate ISR in left anterior descending artery (LAD). A) Long LAD stented segment analysed. B) Two angiographic projections >25° apart allow three-dimensional vessel reconstruction. C) QFR computed based on 3D-QCA and TIMI frame count, resulting in a QFR value of 0.89 (non-significant). Green lines represent the proximal and distal borders of the segment with the most significant lesion and the red line represents the most severe stenosis level. D) FFR value was 0.89.

Figure 1. Case example of QFR analysis of intermediate ISR in left anterior descending artery (LAD). A) Long LAD stented segment analysed. B) Two angiographic projections >25° apart allow three-dimensional vessel reconstruction. C) QFR computed based on 3D-QCA and TIMI frame count, resulting in a QFR value of 0.89 (non-significant). Green lines represent the proximal and distal borders of the segment with the most significant lesion and the red line represents the most severe stenosis level. D) FFR value was 0.89.

Table 1. Vessel characteristics.

The mean difference between FFR and QFR was only 0.01±0.09 (Supplementary Figure 1). Classification agreement between FFR and QFR (in terms of dichotomous functional significance) was high, i.e., 83%. Functional assessment of ISR lesions with QFR was comparable to that reported in de novo lesions in previous studies (Supplementary Table 2). Additionally, the area under the receiver operating characteristic (ROC) curve (AUC) demonstrated high diagnostic performance of QFR regarding its ability to establish ISR relevance, taking FFR as reference (AUC: 0.90 [0.83-0.97]) (Figure 2). Although there was a difference in classification agreement between vessels, this was not of statistical significance (Supplementary Table 3). The study also confirmed the low diagnostic yield of angiography in ISR: in terms of functional severity a 50% DS criterion correctly classified only 68% of ISR cases (Table 2). QFR analysis of ISR cases correctly reclassified (as judged by FFR) 45% of ISR lesions as functionally non-significant.

Figure 2. Significant difference in diagnostic performance of QFR and %DS in identifying significant lesions in the ISR population. The area under the curve using FFR as reference standard shows high diagnostic accuracy of QFR but low diagnostic accuracy of %DS for ISR lesions.

Figure 2. Significant difference in diagnostic performance of QFR and %DS in identifying significant lesions in the ISR population. The area under the curve using FFR as reference standard shows high diagnostic accuracy of QFR but low diagnostic accuracy of %DS for ISR lesions.

Table 2. Diagnostic performance of QFR and 3D-QCA DS in ISR  population using FFR as reference.

Discussion

Our findings support the use of QFR to outline the functional relevance of ISR, with similar diagnostic efficiency to that reported for QFR in major studies in de novo lesions. Compared with available series, the classification agreement of QFR and FFR in ISR lesions was similar to that of two major pivotal studies of QFR-FFR in de novo lesions4,5. Importantly, 45% of the ISR cases deemed significant by angiographic criteria were judged as functionally non-significant both by QFR and by FFR, showing that, due to its high negative predictive value, QFR can lead to safe deferral of revascularisation in a significant proportion of ISR lesions. Furthermore, QFR can be useful as a research tool in assessing the long-term results of stenting.

Limitations

The main limitation of our study was its retrospective character, with exclusion of cases with suboptimal angiography or vessel overlap, something which may have caused selection bias.

Conclusion

QFR has a high diagnostic performance in assessing ISR lesions, similar to that in de novo lesions. It may therefore facilitate adoption of functional assessment in these lesions.

Impact on daily practice

By not requiring intracoronary instrumentation or drug administration, QFR may facilitate the adoption of functional assessment in ISR. Given its high negative predictive value, QFR will contribute to avoiding unnecessary interventions in patients with ISR.

Acknowledgements

We are grateful to Pilar Jiménez-Quevedo, MD, PhD, Luis Nombela-Franco, MD, PhD, Carlos Macaya, MD, PhD, and Antonio Fernández-Ortiz, MD, PhD, for their contribution to data acquisition.

Conflict of interest statement

The authors have no conflicts of interest to declare.

Supplementary data

To read the full content of this article, please download the PDF.


References

Volume 17 Number 5
Aug 6, 2021
Volume 17 Number 5
View full issue


Key metrics

Suggested by Cory

Clinical Research

10.4244/EIJ-D-21-00425 Feb 18, 2022
Reproducibility of quantitative flow ratio: the QREP study
Westra J et al
free

Original Research

10.4244/EIJ-D-24-00010 Oct 7, 2024
Prediction of fractional flow reserve using intravascular ultrasound
Okubo M et al

Editorial

10.4244/EIJ-E-23-00031 Aug 7, 2023
Quantitative flow ratio and cardiovascular risk: paralleling the FFR ischaemic continuum
Kern M
free

Debate

10.4244/EIJ-E-24-00031 Oct 7, 2024
Quantitative flow ratio will supplant wire-based physiological indices: pros and cons
Holm NR et al
free
Trending articles
225.68

State-of-the-Art Review

10.4244/EIJ-D-21-00426 Dec 3, 2021
Myocardial infarction with non-obstructive coronary artery disease
Lindahl B et al
free
105.78

Expert consensus

10.4244/EIJ-E-22-00018 Dec 4, 2023
Definitions and Standardized Endpoints for Treatment of Coronary Bifurcations
Lunardi M et al
free
77.85

State-of-the-Art

10.4244/EIJ-D-23-00840 Sep 2, 2024
Aortic regurgitation: from mechanisms to management
Baumbach A et al
free
68.7

Clinical research

10.4244/EIJ-D-21-00545 Sep 20, 2022
Coronary lithotripsy for the treatment of underexpanded stents: the international; multicentre CRUNCH registry
Tovar Forero M et al
free
47.8

NEW INNOVATION

10.4244/EIJ-D-15-00467 Feb 20, 2018
Design and principle of operation of the HeartMate PHP (percutaneous heart pump)
Van Mieghem NM et al
free
45.3

Clinical research

10.4244/EIJ-D-18-01126 Aug 29, 2019
New-generation mechanical circulatory support during high-risk PCI: a cross-sectional analysis
Ameloot K et al
free
X

The Official Journal of EuroPCR and the European Association of Percutaneous Cardiovascular Interventions (EAPCI)

EuroPCR EAPCI
PCR ESC
Impact factor: 7.6
2023 Journal Citation Reports®
Science Edition (Clarivate Analytics, 2024)
Online ISSN 1969-6213 - Print ISSN 1774-024X
© 2005-2024 Europa Group - All rights reserved