Original Research

DOI: 10.4244/EIJ-D-24-00336

Accuracy of coronary computed tomography angiography-derived quantitative flow ratio for onsite assessment of coronary lesions

Tingwen Weng1, MD; Daixin Ding2, PhD; Guanyu Li3, BSc; Shaofeng Guan1, MD, PhD; Wenzheng Han1, MD, PhD; Qian Gan1, MD, PhD; Ming Li4, MD, PhD; Lin Qi4, MD, PhD; Cheng Li4, MD; Yang Chen1, MD; Liang Zhang1, MD; Tianqi Li1, MD, PhD; Xifeng Chang1, MD; Yankai Chen3, BSc; William Wijns5, MD, PhD; Xinkai Qu1, MD, PhD; Shengxian Tu3, PhD

Abstract

BACKGROUND: Coronary computed tomography angiography (CCTA)-derived Murray law-based quantitative flow ratio (CT-μFR) is a novel non-invasive method for fast computation of fractional flow reserve (FFR) from CCTA images, yet its diagnostic performance remains to be prospectively validated.

AIMS: We aimed to evaluate the diagnostic performance of onsite CT-μFR in patients with coronary artery disease.

METHODS: This prospective, single-centre trial enrolled patients with ≥1 lesion with 30-90% diameter stenosis on CCTA and planned invasive coronary angiography (ICA) within 30 days. CT-μFR, ICA-derived μFR and FFR were evaluated separately in a blinded fashion. The primary endpoint was the diagnostic accuracy of CT-μFR in identifying patients with haemodynamically significant coronary stenosis defined by the invasive standard: FFR ≤0.80, or μFR ≤0.80 when FFR was not available.

RESULTS: Between December 2020 and August 2023, 260 patients were consecutively enrolled. Paired comparison between CT-μFR and the invasive standard was obtained in 706 vessels from 260 patients. The patient-level accuracy of CT-μFR was 89.6% (95% confidence interval [CI]: 85.9-93.4%), which was significantly higher than the prespecified target of 72.0% (p<0.001). Sensitivity, specificity, positive and negative...

Sign in to read
the full article

Forgot your password?
No account yet?
Sign up for free!

Create my pcr account

Join us for free and access thousands of articles from EuroIntervention, as well as presentations, videos, cases from PCRonline.com

Volume 20 Number 20
Oct 21, 2024
Volume 20 Number 20
View full issue


Key metrics

On the same subject

Clinical Research

10.4244/EIJ-D-21-00471 Apr 22, 2022
Vessel fractional flow reserve (vFFR) for the assessment of stenosis severity: the FAST II study
Masdjedi K et al
free

Editorial

10.4244/EIJ-E-23-00031 Aug 7, 2023
Quantitative flow ratio and cardiovascular risk: paralleling the FFR ischaemic continuum
Kern M
free

10.4244/EIJV9I2A44 Jun 28, 2013
Virtual fractional flow reserve by coronary computed tomography - hope or hype?
Rajani R et al
free

10.4244/EIJV11SVA11 May 19, 2015
Image-based assessment of fractional flow reserve
Tu S et al
free
Trending articles
211.3

State-of-the-Art Review

10.4244/EIJ-D-21-01034 Jun 3, 2022
Management of in-stent restenosis
Alfonso F et al
free
173.03

Focus article

10.4244/EIJY19M08_01 Jan 17, 2020
EHRA/EAPCI expert consensus statement on catheter-based left atrial appendage occlusion – an update
Glikson M et al
free
168.95

Translational research

10.4244/EIJ-D-21-00824 May 15, 2022
Bench test and in vivo evaluation of longitudinal stent deformation during proximal optimisation
Toth GG et al
free
151.18

State-of-the-Art

10.4244/EIJ-D-22-00776 Apr 3, 2023
Computed tomographic angiography in coronary artery disease
Serruys PW et al
free
55.9

Clinical research

10.4244/EIJ-D-22-00621 Feb 20, 2023
Long-term changes in coronary physiology after aortic valve replacement
Sabbah M et al
free
X

The Official Journal of EuroPCR and the European Association of Percutaneous Cardiovascular Interventions (EAPCI)

EuroPCR EAPCI
PCR ESC
Impact factor: 7.6
2023 Journal Citation Reports®
Science Edition (Clarivate Analytics, 2024)
Online ISSN 1969-6213 - Print ISSN 1774-024X
© 2005-2024 Europa Group - All rights reserved