IMAGE IN CARDIOLOGY

DOI: 10.4244/EIJ-D-16-00323

Delayed fracture of a bioresorbable vascular scaffold implanted for in-stent restenosis

Teresa Bastante, MD; Javier Cuesta, MD; Fernando Rivero, MD; Marcos García-Guimaraes, MD; Amparo Benedicto, MD; Fernando Alfonso*, MD, PhD

A 61-year-old woman presented with effort angina one year after the implantation of a drug-eluting stent (DES) in the mid right coronary artery (RCA). Coronary angiography revealed a proximal “edge” in-stent restenosis (Panel A, arrow; yellow broken line: DES) that was successfully treated with a 3×8 mm bioresorbable vascular scaffold (BVS) (Absorb™; Abbott Vascular, Santa Clara, CA, USA) at 20 bar (Panel B, red broken line: BVS). Optical coherence tomography (OCT) confirmed an excellent expansion and apposition of the BVS (Panel C-Panel E, yellow broken line: DES; red broken line: BVS). One month later she was admitted for an inferior acute myocardial infarction. Urgent coronary angiography showed a good result of the BVS but complete occlusion of the most distal RCA that was treated with a new DES. On OCT, the BVS was covered by incipient bright neointima. However, a localised malapposition of some BVS struts was readily identified leading to the diagnosis of late scaffold fracture (Panel F-Panel H, arrows). No further intervention was made. At eight-month follow-up, the BVS maintained an excellent angiographic result and OCT revealed complete neointimal coverage of the fractured BVS (Panel I, Panel J, arrows) (*denotes wire artefact).

Stent fracture is a rare complication described in metallic stents and, more recently, also in BVS. Stent fracture is associated with major complications including restenosis, aneurysm/pseudoaneurysm formation and thrombosis. Risk factors include high implantation pressures and hinge point location. Our BVS was implanted at high pressures but not at a hinge point. The fracture was detected well before the time required for resorption-induced structural BVS disintegrity. Iatrogenic mechanical disruption can never be completely discarded but no clues were identified in this regard. Notably, the BVS rupture was located precisely at the edge of the previous DES. The potential interaction of the rigid underlying DES platform with the flexible overlapping BVS structure should be investigated. To the best of our knowledge, this is the first description of a delayed fracture in a BVS implanted for in-stent restenosis.

Conflict of interest statement

The authors have no conflicts of interest to declare.

Volume 12 Number 13
Jan 20, 2017
Volume 12 Number 13
View full issue


Key metrics

Suggested by Cory

Image – Interventional flashlight

10.4244/EIJ-D-19-00063 Jan 20, 2021
Late structural discontinuity after bioresorbable vascular scaffold implantation in patients with in-stent restenosis
Cuesta J et al
free

IMAGE IN CARDIOLOGY

10.4244/EIJY14M10_07 Nov 20, 2015
Subacute thrombosis of a bioresorbable vascular scaffold implanted for recurrent in-stent restenosis
Rivero F et al
free

IMAGE IN CARDIOLOGY

10.4244/EIJV12I1A10 May 16, 2016
Coronary aneurysm without malapposition after bioresorbable vascular scaffold implantation
Timmers L et al
free

EXPERT REVIEW

10.4244/EIJ-D-16-00471 Feb 20, 2017
Possible mechanical causes of scaffold thrombosis: insights from case reports with intracoronary imaging
Sotomi Y et al
free

IMAGE IN CARDIOLOGY

10.4244/EIJ-D-16-00259 Mar 20, 2017
Neoatherosclerosis: an emerging and conceptually unexpected cause of very late bioresorbable vascular scaffold failure
Hiltrop N et al
free

IMAGE IN CARDIOLOGY

10.4244/EIJV12I9A89 Oct 20, 2016
Acquired coronary artery aneurysm following treatment with bioresorbable vascular scaffolds
O’Gallagher K et al
free
Trending articles
225.68

State-of-the-Art Review

10.4244/EIJ-D-21-00426 Dec 3, 2021
Myocardial infarction with non-obstructive coronary artery disease
Lindahl B et al
free
105.78

Expert consensus

10.4244/EIJ-E-22-00018 Dec 4, 2023
Definitions and Standardized Endpoints for Treatment of Coronary Bifurcations
Lunardi M et al
free
77.85

State-of-the-Art

10.4244/EIJ-D-23-00840 Sep 2, 2024
Aortic regurgitation: from mechanisms to management
Baumbach A et al
free
68.7

Clinical research

10.4244/EIJ-D-21-00545 Sep 20, 2022
Coronary lithotripsy for the treatment of underexpanded stents: the international; multicentre CRUNCH registry
Tovar Forero M et al
free
47.8

NEW INNOVATION

10.4244/EIJ-D-15-00467 Feb 20, 2018
Design and principle of operation of the HeartMate PHP (percutaneous heart pump)
Van Mieghem NM et al
free
45.3

Clinical research

10.4244/EIJ-D-18-01126 Aug 29, 2019
New-generation mechanical circulatory support during high-risk PCI: a cross-sectional analysis
Ameloot K et al
free
X

The Official Journal of EuroPCR and the European Association of Percutaneous Cardiovascular Interventions (EAPCI)

EuroPCR EAPCI
PCR ESC
Impact factor: 7.6
2023 Journal Citation Reports®
Science Edition (Clarivate Analytics, 2024)
Online ISSN 1969-6213 - Print ISSN 1774-024X
© 2005-2024 Europa Group - All rights reserved