DOI: 10.4244/EIJV13I17A339

Reply to the letter to the editor by Saito regarding the article “In vivo validation of mathematically derived fractional flow reserve for assessing haemodynamics of coronary tandem lesions”

Jihoon Kweon, PhD; Young-Hak Kim*, MD

We appreciate the interest in our article1. The author (N. Saito) raised the issue of fundamental errors in the primary assumption for the mathematical model of FFR post-stenting and suggested that the application of the prediction model in Yamamoto et al2 would improve the outcomes of FFR prediction.

The flow rate (Q) in our derivation is defined as the coronary flow (not as the perfusion flow), which determines the translesional pressure gradient3. It is well established that the coronary flow is proportional to the difference between the distal pressure and the wedge pressure4. This is also the first equation for the model derivation of De Bruyne et al5, which was considered as the “conventional model” for the comparison in our publication. Because the same assumptions were made for the derivation, the prediction equations of our model are inherently equivalent to those of De Bruyne et al2. We believe our mathematical derivation is founded on the well-established knowledge of coronary physiology.

In the validation of our model, the predicted FFR values were situated within the band of true FFR±0.03 or slightly overestimated. When w=1 is used as suggested, instead of w=1.33 in our derivation, the denominator in the equation becomes larger and the predicted FFR values are further overestimated.

Conflict of interest statement

The authors have no conflicts of interest to declare.

Supplementary data

Both of the letters to the Editor disputing the paper, “Invivo validation of mathematically derived fractional flow reserve for assessing haemodynamics of coronary tandem lesions”1, together with all further correspondence can be found online in the Supplementary data.

To read the full content of this article, please download the PDF.

Volume 13 Number 17
Apr 20, 2018
Volume 13 Number 17
View full issue


Key metrics

Suggested by Cory

Clinical research

10.4244/EIJ-D-18-00668 Oct 18, 2019
Personalised fractional flow reserve: a novel concept to optimise myocardial revascularisation
Gosling R et al
free

10.4244/EIJV11SVA11 May 19, 2015
Image-based assessment of fractional flow reserve
Tu S et al
free
Trending articles
73.55

State-of-the-Art

10.4244/EIJ-D-24-00386 Feb 3, 2025
Mechanical circulatory support for complex, high-risk percutaneous coronary intervention
Ferro E et al
free
69.996

10.4244/EIJV13I12A217 Dec 8, 2017
Swimming against the tide: insights from the ORBITA trial
Al-Lamee R and Francis D
free
60.55

State-of-the-Art

10.4244/EIJ-D-24-00066 Apr 21, 2025
Management of complications after valvular interventions
Bansal A et al
free
58.3

Clinical research

10.4244/EIJ-D-23-00344 Sep 18, 2023
Clinical outcomes of TAVI with the Myval balloon-expandable valve for non-calcified aortic regurgitation
Sanchez-Luna JP et al
free
38.75

State-of-the-Art

10.4244/EIJ-D-23-00912 Oct 7, 2024
Optical coherence tomography to guide percutaneous coronary intervention
Almajid F et al
free
25.5

Expert Review

10.4244/EIJ-D-24-00535 May 5, 2025
Catheter-based techniques for pulmonary embolism treatment
Costa F et al
X

The Official Journal of EuroPCR and the European Association of Percutaneous Cardiovascular Interventions (EAPCI)

EuroPCR EAPCI
PCR ESC
Impact factor: 7.6
2023 Journal Citation Reports®
Science Edition (Clarivate Analytics, 2024)
Online ISSN 1969-6213 - Print ISSN 1774-024X
© 2005-2025 Europa Group - All rights reserved