DOI: 10.4244/EIJV13I17A339

Reply to the letter to the editor by Saito regarding the article “In vivo validation of mathematically derived fractional flow reserve for assessing haemodynamics of coronary tandem lesions”

Jihoon Kweon, PhD; Young-Hak Kim*, MD

We appreciate the interest in our article1. The author (N. Saito) raised the issue of fundamental errors in the primary assumption for the mathematical model of FFR post-stenting and suggested that the application of the prediction model in Yamamoto et al2 would improve the outcomes of FFR prediction.

The flow rate (Q) in our derivation is defined as the coronary flow (not as the perfusion flow), which determines the translesional pressure gradient3. It is well established that the coronary flow is proportional to the difference between the distal pressure and the wedge pressure4. This is also the first equation for the model derivation of De Bruyne et al5, which was considered as the “conventional model” for the comparison in our publication. Because the same assumptions were made for the derivation, the prediction equations of our model are inherently equivalent to those of De Bruyne et al2. We believe our mathematical derivation is founded on the well-established knowledge of coronary physiology.

In the validation of our model, the predicted FFR values were situated within the band of true FFR±0.03 or slightly overestimated. When w=1 is used as suggested, instead of w=1.33 in our derivation, the denominator in the equation becomes larger and the predicted FFR values are further overestimated.

Conflict of interest statement

The authors have no conflicts of interest to declare.

Supplementary data

Both of the letters to the Editor disputing the paper, “Invivo validation of mathematically derived fractional flow reserve for assessing haemodynamics of coronary tandem lesions”1, together with all further correspondence can be found online in the Supplementary data.

To read the full content of this article, please download the PDF.

Volume 13 Number 17
Apr 20, 2018
Volume 13 Number 17
View full issue


Key metrics

Suggested by Cory

Clinical research

10.4244/EIJ-D-18-00668 Oct 18, 2019
Personalised fractional flow reserve: a novel concept to optimise myocardial revascularisation
Gosling R et al
free

10.4244/EIJV11SVA11 May 19, 2015
Image-based assessment of fractional flow reserve
Tu S et al
free
Trending articles
151.43

State-of-the-Art

10.4244/EIJ-D-22-00776 Apr 3, 2023
Computed tomographic angiography in coronary artery disease
Serruys PW et al
free
55.9

Clinical research

10.4244/EIJ-D-22-00621 Feb 20, 2023
Long-term changes in coronary physiology after aortic valve replacement
Sabbah M et al
free
54.9

Expert review

10.4244/EIJ-D-21-01010 Jun 24, 2022
Device-related thrombus following left atrial appendage occlusion
Simard T et al
free
43.75

Clinical Research

10.4244/EIJ-D-21-01091 Aug 5, 2022
Lifetime management of patients with symptomatic severe aortic stenosis: a computed tomography simulation study
Medranda G et al
free
39.95

Clinical research

10.4244/EIJ-D-22-00558 Feb 6, 2023
Permanent pacemaker implantation and left bundle branch block with self-expanding valves – a SCOPE 2 subanalysis
Pellegrini C et al
free
X

The Official Journal of EuroPCR and the European Association of Percutaneous Cardiovascular Interventions (EAPCI)

EuroPCR EAPCI
PCR ESC
Impact factor: 7.6
2023 Journal Citation Reports®
Science Edition (Clarivate Analytics, 2024)
Online ISSN 1969-6213 - Print ISSN 1774-024X
© 2005-2024 Europa Group - All rights reserved