Expert Review

DOI: 10.4244/EIJ-D-24-00332

Lifetime management considerations to optimise transcatheter aortic valve implantation: a practical guide

Karan Rao1,2, MD, BMed, MPH; Alexandra Baer3, MSN, MSHM; Vinayak N. Bapat4, MBBS, MS, MCh; Nicolo Piazza5, MD, PhD; Peter Hansen1,3, MBBS, PhD; Bernard Prendergast6,7, DM; Ravinay Bhindi1,2, MBBS, PhD

Abstract

Transcatheter aortic valve implantation (TAVI) is a safe and effective procedure for the treatment of aortic stenosis. With the recently broadened indications, there is a larger cohort of patients likely to outlive their first transcatheter heart valve (THV). This review discusses relevant lifetime planning considerations, focusing on the utility of preprocedural computed tomography imaging to help implanters future-proof their patients who are likely to outlive their first valve. The initial priority is to optimise the index procedure by maximising THV haemodynamic function and durability. This involves maximising the effective orifice area, minimising the risk of new pacemaker implantation, reducing paravalvular regurgitation, and preventing coronary obstruction and annular rupture. In patients requiring a second valve procedure, a significant proportion will require a TAVI-in-TAVI, and implanters should consider the key priorities for a redo procedure, including the increased risks of patient-prosthesis mismatch and conduction abnormalities, promoting coronary reaccessibility, and preventing coronary obstruction and sinus sequestration. Careful planning can identify potential hurdles as well as predict the feasibility and likely outcomes of redo-TAVI, to help individualise care over the lifetime of each patient.

Sign in to read
the full article

Forgot your password?
No account yet?
Sign up for free!

Create my pcr account

Join us for free and access thousands of articles from EuroIntervention, as well as presentations, videos, cases from PCRonline.com

Volume 20 Number 24
Dec 16, 2024
Volume 20 Number 24
View full issue


Key metrics

Suggested by Cory

Clinical Research

10.4244/EIJ-D-21-01091 Aug 5, 2022
Lifetime management of patients with symptomatic severe aortic stenosis: a computed tomography simulation study
Medranda G et al
free

10.4244/EIJV14I2A24 Jun 20, 2018
Transcatheter aortic valve implantation: don’t forget the coronary arteries!
Søndergaard L and De Backer O
free

Expert review

10.4244/EIJ-D-19-00788 Nov 15, 2019
Residual challenges in TAVI: moving forward
Barbanti M et al
free

AORTIC VALVE INTERVENTIONS

10.4244/EIJV12SYA9 Sep 18, 2016
TAVI device selection: time for a patient-specific approach
Lee M et al
free

Short report

10.4244/EIJ-D-19-01094 Jun 12, 2020
TAVR-in-TAVR and coronary access: importance of preprocedural planning
Tarantini G et al
free

10.4244/EIJV14I15A263 Feb 7, 2019
Valve durability – is this the Achilles’ heel of TAVI?
Jabbour R and Mikhail G
free

10.4244/EIJV8I5A82 Sep 28, 2012
Computed tomography to improve TAVI outcomes
Debonnaire P et al
free

AORTIC VALVE INTERVENTIONS

10.4244/EIJV12SYA11 Sep 18, 2016
Patient selection for TAVI in 2016: should we break through the low-risk barrier?
Abdelghani M and Serruys PW
free
Trending articles
318.1

State-of-the-Art Review

10.4244/EIJ-D-21-00695 Nov 19, 2021
Transcatheter treatment for tricuspid valve disease
Praz F et al
free
116.75

State-of-the-Art

10.4244/EIJ-D-24-00066 Apr 21, 2025
Management of complications after valvular interventions
Bansal A et al
free
108.3

Viewpoint

10.4244/EIJ-E-22-00007 May 15, 2022
TAVI at 20: how a crazy idea led to a clinical revolution
Eltchaninoff H et al
free
91.6

Image – Interventional flashlight

10.4244/EIJ-D-22-00344 Aug 5, 2022
First dedicated transcatheter leaflet splitting device: the ShortCut device
Tchétché D et al
free
72.4

State-of-the-art

10.4244/EIJ-D-22-00627 Feb 6, 2023
Left atrial appendage occlusion
Holmes D et al
free
68.9

State-of-the-Art

10.4244/EIJ-D-24-00992 Sep 15, 2025
Antithrombotic therapy in complex percutaneous coronary intervention
Castiello D et al
free
60.65

Clinical research

10.4244/EIJ-D-20-01155 Oct 20, 2021
A deep learning algorithm for detecting acute myocardial infarction
Liu W et al
free
49.55

CLINICAL RESEARCH

10.4244/EIJ-D-17-00962 Apr 6, 2018
A new optical coherence tomography-based calcium scoring system to predict stent underexpansion
Fujino A et al
free
43.45

State-of-the-Art Review

10.4244/EIJ-D-21-00145 Sep 20, 2021
Robotics, imaging, and artificial intelligence in the catheterisation laboratory
Beyar R et al
free
X

PCR
Impact factor: 9.5
2024 Journal Citation Reports®
Science Edition (Clarivate Analytics, 2025)
Online ISSN 1969-6213 - Print ISSN 1774-024X
© 2005-2025 Europa Group - All rights reserved