DOI:

Use of a thrombus extraction catheter (Thrombuster II®) in an acute myocardial infarction

Steve Ramcharitar, BMBCh DPhil; Georgios Sianos, MD PhD; Willem J. Van der Giessen*, MD PhD

Background

In the primary percutaneous intervention (PCI) of an acute ST elevated myocardial infarct (STEMI), the microvascular clogging caused by embolisation of thrombotic or atheromatous debris can affect the myocardial tissue perfusion to increase the infarct size and reduce survival1-5. In the catheterisation laboratory this usually manifests itself by sub-optimal angiographic capillary opacification (myocardial blush)6,7 or delayed ST-segment resolution with an inappropriate enzyme rise8. To circumvent this problem there are a number of thrombectomy and distal protection devices currently available9-12. However, the usefulness of thrombectomy as an adjunct therapy during primary PCI remains contentious13. In some pilot studies, and in small-randomised trials, there have been promising results with good microcirculation blush, improved left ventricular function9,14, and enhanced event-free survival, whilst in others there was no significant benefit15,16. Probable reasons for failure could be have been due to the inefficiency of the device; high thrombotic burden suggesting more appropriate use in a selected patient population and the late clinical presentation meant that the aspirating a thrombus in vessel associated with a transmural infarction offered little benefit15,17. The Thrombuster II (Kaneka Corp. Japan) is a thrombectomy device that offers a low frictional resistance. This together with it’s large circular lumen can provide superior aspiration ability. This technical report details the device and its use in an acute ST-elevated infarction18.

Case detail

A 53-year old male smoker with no other risk factors for coronary artery disease was referred for primary PCI of an acute infero-posterior infarction within two hours of symptoms. In the cathetherisation laboratory he was haemodynamically stable. Angiography revealed a proximally occluded dominant right coronary artery (RCA) with thrombus (Figure 1a), and no significant disease in the left coronary system.

Figure 1. a) Occluded right coronary artery (RCA) with thrombus; b) RCA following clot aspiration with Thrombuster II thrombectomy device and balloon angioplasty.

Successful percutaneous intervention to the RCA (Figure 1b) involved twice manually aspirating the clot (Figure 2) from distal to the proximal segment with a Thrombuster II thrombectomy device advanced over a guidewire through a 6Fr guiding catheter.

Figure 2. Thrombus extracted from RCA with Thrombuster II thrombectomy device.

This was followed by balloon angioplasty of the distal vessel at 14 atmospheres (Voyager RX balloon 2.5x15mm, Abbott Vascular, Santa Clara CA; USA) together with the administration of boluses (x5) of intracoronary nitroprusside (0.1mg) and the weight adjusted infusion of a GPIIa/IIIb inhibitor (Integrillin) as per protocol. Electrocardiography showed immediate resolution of ST elevation, with TIMI III flow achieved in the target vessel and a TIMI grade II myocardial blush. At discharge, peak enzymes were CK 602U/l, CKMB 63.4ug/l, and troponin T 1.47ug/l. Dual antiplatelet therapy with clopidogrel for 12 months, and aspirin indefinitely was recommended.

Technical data

The Thrombuster II device has CE approval for the removal of thrombus and debris in the coronary or peripheral artery by percutaneous suction. It is a single-user, easy to handle design based on a rapid exchange short monorail system (10mm) using standard guidewire techniques and is available in two sizes for use in 6Fr and 7Fr standard guiding catheters. It has a radiopaque marker at distal guidewire lumen and a proximal luer-lock port. The proximal luer lock connector connects extension tube and the lock type aspiration syringe (30cc) that allows for easy and effective aspiration. The catheter is 140cm long, and its distal portion (30cm) is hydrophilically coated. The inner diameter of aspiration lumen is 1.10mm at proximal part and 1.00mm at distal part as for 6Fr type and 1.32mm at proximal part and 1.20mm at distal part as for 7Fr type (Figure 3).

Figure 3. Technical specifications of Thrombuster II 6Fr and 7Fr thrombectomy device.

This feature, together with the better flow kinetics of a circular lumen and the hydrophilic coating, is thought to improve its performance.

In addition, the proximal cross sectional area of 0.95mm2 and 1.37mm2 (in the 6Fr and 7Fr systems respectively) are the largest currently commercially available thrombectomy devices (Table 1).

The device has a removable core wire that gives better pushability and prevents kinking during insertion. The monorail core extends 2.2mm and 1.8mm beyond the aspirating lumen (in the 6Fr and 7Fr system respectively) resulting in a maximal diameter of 1.47mm and 1.60mm.

Conclusion

The Thrombuster II thrombectomy device was effective in aspirating fresh thrombus in a STEMI patient. This is an expanding field with several devices available with differences in their technical specifications that can influence their performances. Comparative assessment in selected patient population is required to increase the utility of these devices.

Acknowledgement

The authors would like to thank Mr Hiroyasu Higuchi, Kaneka Corp., Osaka, JAPAN for help with the manuscript.


References

Volume 3 Number 4
Jan 20, 2008
Volume 3 Number 4
View full issue


Key metrics

Suggested by Cory

Editorial

10.4244/EIJ-E-24-00065 Apr 21, 2025
From invasive gradients to pressure recovery: rethinking long-standing paradigms
Joner M and Mylotte D
free

Editorial

10.4244/EIJ-E-25-00011 Apr 21, 2025
Transcatheter aortic valve implantation with complex, high-risk indicated PCI
Patterson T and McDonaugh B
free

Original Research

10.4244/EIJ-D-24-00341 Apr 21, 2025
Prognostic value of invasive versus echocardiography-derived aortic gradient in patients undergoing TAVI
van den Dorpel M et al

Flashlight

10.4244/EIJ-D-24-00871 Apr 21, 2025
Management of bioprosthetic valve failure at 10 years after TAV-in-SAV
Jelisejevas J et al

Debate

10.4244/EIJ-E-24-00071 Apr 21, 2025
Could the age threshold for TAVI be relaxed to below 65 years? Pros and cons
Garot P et al

State-of-the-Art

10.4244/EIJ-D-24-00066 Apr 21, 2025
Management of complications after valvular interventions
Bansal A et al
free
Trending articles
69.746

10.4244/EIJV13I12A217 Dec 8, 2017
Swimming against the tide: insights from the ORBITA trial
Al-Lamee R and Francis D
free
59.15

State-of-the-Art

10.4244/EIJ-D-24-00066 Apr 21, 2025
Management of complications after valvular interventions
Bansal A et al
free
57.6

State-of-the-Art

10.4244/EIJ-D-24-00386 Feb 3, 2025
Mechanical circulatory support for complex, high-risk percutaneous coronary intervention
Ferro E et al
free
39.45

Clinical research

10.4244/EIJ-D-23-00725 Nov 19, 2023
A systematic algorithm for large-bore arterial access closure after TAVI: the TAVI-MultiCLOSE study
Rosseel L et al
free
39.45

Original Research

10.4244/EIJ-D-23-00725 Mar 18, 2024
A systematic algorithm for large-bore arterial access closure after TAVI: the TAVI-MultiCLOSE study
Rosseel L et al
free
38.75

State-of-the-Art

10.4244/EIJ-D-23-00912 Oct 7, 2024
Optical coherence tomography to guide percutaneous coronary intervention
Almajid F et al
free
36

State-of-the-Art

10.4244/EIJ-D-23-00448 Jan 15, 2024
Coronary spasm and vasomotor dysfunction as a cause of MINOCA
Yaker ZS et al
free
35.15

State-of-the-Art

10.4244/EIJ-D-23-00895 Apr 1, 2024
Percutaneous interventions for pulmonary embolism
Finocchiaro S et al
free
28.5

CLINICAL RESEARCH

10.4244/EIJV11I1A6 May 19, 2015
European expert consensus on rotational atherectomy
Barbato E et al
free
X

The Official Journal of EuroPCR and the European Association of Percutaneous Cardiovascular Interventions (EAPCI)

EuroPCR EAPCI
PCR ESC
Impact factor: 7.6
2023 Journal Citation Reports®
Science Edition (Clarivate Analytics, 2024)
Online ISSN 1969-6213 - Print ISSN 1774-024X
© 2005-2025 Europa Group - All rights reserved