DOI:

Detection of a necrotic core-rich, highly deformable plaque in an angiographically non-diseased proximal LAD

Gastón A. Rodriguez-Granillo, MD; Raquel del Valle, MD; Jurgen Ligthart, BSc; Patrick W. Serruys*, MD, PhD

Thin-cap fibro atheroma (TCFA) lesions, the most prevalent precursor of plaque rupture, are composed of a lipid-rich necrotic core, a thin-fibrous cap with macrophage and lymphocyte infiltration, decreased smooth muscle cell content and expansive remodeling. Virtual Histology™ uses spectral analysis of intravascular ultrasound (IVUS) radiofrequency data to construct tissue maps that classify plaque into four major components; calcified, fibrous, fibrolipidic and necrotic core regions that are labeled white, green, greenish-yellow and red respectively. Palpography™ evaluates in vivo the mechanical properties of plaque tissue. The local strain is calculated from the radiofrequency traces using cross-correlation analysis and displayed, colour coded, from blue (for 0% strain) through yellow (for 2% strain) via red (Figure 1).

At a defined pressure, soft tissue (lipid-rich) components will deform more than hard (fibrous-calcified) components. Both techniques have been previously validated1,2.

Figure 1a shows an angiographically non-diseased proximal left anterior descending (LAD) artery. IVUS longitudinal reconstruction (Figure 1b) shows diffuse LAD disease. An eccentric mixed plaque that did not compromise the lumen was detected in the proximal LAD (Figure 1c). This segment was further analyzed with Palpography (20 MHz Eagle Eye, Volcano Therapeutics) and Virtual Histology™ (30 MHz Ultracross, Boston Scientific Corp) (Figures 1d and 1e). Despite its innocuous appearance on gray-scale IVUS, highly deformable shoulders with an underlying necrotic core-rich substrate were detected with the aid of strain and compositional imaging.

Although compatible with the presence of a vulnerable plaque, the prognostic value of these findings is currently unknown and needs to be established in large prospective randomized trials. Thus, the patient was discharged on intensive systemic therapy including lipid-lowering agents.

Figure 1. LAD= left anterior descending coronary artery. LCx= Left circumflex coronary artery. LMCA= Left main coronary artery. * Pericardium.

Volume 1 Number 3
Nov 20, 2005
Volume 1 Number 3
View full issue


Key metrics

Suggested by Cory

Editorial

10.4244/EIJ-E-24-00065 Apr 21, 2025
From invasive gradients to pressure recovery: rethinking long-standing paradigms
Joner M and Mylotte D
free

Editorial

10.4244/EIJ-E-25-00011 Apr 21, 2025
Transcatheter aortic valve implantation with complex, high-risk indicated PCI
Patterson T and McDonaugh B
free

Original Research

10.4244/EIJ-D-24-00341 Apr 21, 2025
Prognostic value of invasive versus echocardiography-derived aortic gradient in patients undergoing TAVI
van den Dorpel M et al

Flashlight

10.4244/EIJ-D-24-00871 Apr 21, 2025
Management of bioprosthetic valve failure at 10 years after TAV-in-SAV
Jelisejevas J et al

Debate

10.4244/EIJ-E-24-00071 Apr 21, 2025
Could the age threshold for TAVI be relaxed to below 65 years? Pros and cons
Garot P et al

State-of-the-Art

10.4244/EIJ-D-24-00066 Apr 21, 2025
Management of complications after valvular interventions
Bansal A et al
free
Trending articles
69.746

10.4244/EIJV13I12A217 Dec 8, 2017
Swimming against the tide: insights from the ORBITA trial
Al-Lamee R and Francis D
free
57.6

State-of-the-Art

10.4244/EIJ-D-24-00386 Feb 3, 2025
Mechanical circulatory support for complex, high-risk percutaneous coronary intervention
Ferro E et al
free
56.05

State-of-the-Art

10.4244/EIJ-D-24-00066 Apr 21, 2025
Management of complications after valvular interventions
Bansal A et al
free
39.45

Clinical research

10.4244/EIJ-D-23-00725 Nov 19, 2023
A systematic algorithm for large-bore arterial access closure after TAVI: the TAVI-MultiCLOSE study
Rosseel L et al
free
39.45

Original Research

10.4244/EIJ-D-23-00725 Mar 18, 2024
A systematic algorithm for large-bore arterial access closure after TAVI: the TAVI-MultiCLOSE study
Rosseel L et al
free
39.1

State-of-the-Art

10.4244/EIJ-D-23-00912 Oct 7, 2024
Optical coherence tomography to guide percutaneous coronary intervention
Almajid F et al
free
36

State-of-the-Art

10.4244/EIJ-D-23-00448 Jan 15, 2024
Coronary spasm and vasomotor dysfunction as a cause of MINOCA
Yaker ZS et al
free
35.15

State-of-the-Art

10.4244/EIJ-D-23-00895 Apr 1, 2024
Percutaneous interventions for pulmonary embolism
Finocchiaro S et al
free
28.5

CLINICAL RESEARCH

10.4244/EIJV11I1A6 May 19, 2015
European expert consensus on rotational atherectomy
Barbato E et al
free
X

The Official Journal of EuroPCR and the European Association of Percutaneous Cardiovascular Interventions (EAPCI)

EuroPCR EAPCI
PCR ESC
Impact factor: 7.6
2023 Journal Citation Reports®
Science Edition (Clarivate Analytics, 2024)
Online ISSN 1969-6213 - Print ISSN 1774-024X
© 2005-2025 Europa Group - All rights reserved