DOI:

Detection of a necrotic core-rich, highly deformable plaque in an angiographically non-diseased proximal LAD

Gastón A. Rodriguez-Granillo, MD; Raquel del Valle, MD; Jurgen Ligthart, BSc; Patrick W. Serruys*, MD, PhD

Thin-cap fibro atheroma (TCFA) lesions, the most prevalent precursor of plaque rupture, are composed of a lipid-rich necrotic core, a thin-fibrous cap with macrophage and lymphocyte infiltration, decreased smooth muscle cell content and expansive remodeling. Virtual Histology™ uses spectral analysis of intravascular ultrasound (IVUS) radiofrequency data to construct tissue maps that classify plaque into four major components; calcified, fibrous, fibrolipidic and necrotic core regions that are labeled white, green, greenish-yellow and red respectively. Palpography™ evaluates in vivo the mechanical properties of plaque tissue. The local strain is calculated from the radiofrequency traces using cross-correlation analysis and displayed, colour coded, from blue (for 0% strain) through yellow (for 2% strain) via red (Figure 1).

At a defined pressure, soft tissue (lipid-rich) components will deform more than hard (fibrous-calcified) components. Both techniques have been previously validated1,2.

Figure 1a shows an angiographically non-diseased proximal left anterior descending (LAD) artery. IVUS longitudinal reconstruction (Figure 1b) shows diffuse LAD disease. An eccentric mixed plaque that did not compromise the lumen was detected in the proximal LAD (Figure 1c). This segment was further analyzed with Palpography (20 MHz Eagle Eye, Volcano Therapeutics) and Virtual Histology™ (30 MHz Ultracross, Boston Scientific Corp) (Figures 1d and 1e). Despite its innocuous appearance on gray-scale IVUS, highly deformable shoulders with an underlying necrotic core-rich substrate were detected with the aid of strain and compositional imaging.

Although compatible with the presence of a vulnerable plaque, the prognostic value of these findings is currently unknown and needs to be established in large prospective randomized trials. Thus, the patient was discharged on intensive systemic therapy including lipid-lowering agents.

Figure 1. LAD= left anterior descending coronary artery. LCx= Left circumflex coronary artery. LMCA= Left main coronary artery. * Pericardium.

Volume 1 Number 3
Nov 20, 2005
Volume 1 Number 3
View full issue


Key metrics

Suggested by Cory
Trending articles
318.1

State-of-the-Art Review

10.4244/EIJ-D-21-00695 Nov 19, 2021
Transcatheter treatment for tricuspid valve disease
Praz F et al
free
117

State-of-the-Art

10.4244/EIJ-D-24-00066 Apr 21, 2025
Management of complications after valvular interventions
Bansal A et al
free
108.3

Viewpoint

10.4244/EIJ-E-22-00007 May 15, 2022
TAVI at 20: how a crazy idea led to a clinical revolution
Eltchaninoff H et al
free
91.6

Image – Interventional flashlight

10.4244/EIJ-D-22-00344 Aug 5, 2022
First dedicated transcatheter leaflet splitting device: the ShortCut device
Tchétché D et al
free
71.3

State-of-the-art

10.4244/EIJ-D-22-00627 Feb 6, 2023
Left atrial appendage occlusion
Holmes D et al
free
68.9

State-of-the-Art

10.4244/EIJ-D-24-00992 Sep 15, 2025
Antithrombotic therapy in complex percutaneous coronary intervention
Castiello D et al
free
60.65

Clinical research

10.4244/EIJ-D-20-01155 Oct 20, 2021
A deep learning algorithm for detecting acute myocardial infarction
Liu W et al
free
50.95

Expert Review

10.4244/EIJ-D-25-00201 Oct 10, 2025
Drug-coated balloons for coronary bifurcation lesions
Fezzi S et al
free
50.95

Expert Review

10.4244/EIJ-D-25-00201 Oct 20, 2025
Drug-coated balloons for coronary bifurcation lesions
Fezzi S et al
free
49.55

CLINICAL RESEARCH

10.4244/EIJ-D-17-00962 Apr 6, 2018
A new optical coherence tomography-based calcium scoring system to predict stent underexpansion
Fujino A et al
free
X

PCR
Impact factor: 9.5
2024 Journal Citation Reports®
Science Edition (Clarivate Analytics, 2025)
Online ISSN 1969-6213 - Print ISSN 1774-024X
© 2005-2025 Europa Group - All rights reserved