Original Research

DOI: 10.4244/EIJ-D-24-00075

Absolute coronary flow and microvascular resistance before and after transcatheter aortic valve implantation

Emanuele Gallinoro1,2, MD, PhD; Pasquale Paolisso1,2, MD, PhD; Dario Tino Bertolone1, MD; Giuseppe Esposito1,3, MD, PhD; Marta Belmonte1,3, MD; Attilio Leone1,3, MD; Michele Mattia Viscusi1,3, MD; Monika Shumkova1, MD; Cristina De Colle1, MD; Ivan Degrieck1, MD; Filip Casselman1, MD; Martin Penicka1, MD; Carlos Collet1, MD, PhD; Jeroen Sonck1, MD, PhD; Eric Wyffels1, MD; Jozef Bartunek1, MD, PhD; Bernard De Bruyne1,4, MD, PhD; Marc Vanderheyden1, MD; Emanuele Barbato1,5, MD, PhD

Abstract

BACKGROUND: Severe aortic stenosis (AS) is associated with left ventricular (LV) remodelling, likely causing alterations in coronary blood flow and microvascular resistance.

AIMS: We aimed to evaluate changes in absolute coronary flow and microvascular resistance in patients with AS undergoing transcatheter aortic valve implantation (TAVI).

METHODS: Consecutive patients with AS undergoing TAVI with non-obstructive coronary artery disease in the left anterior descending artery (LAD) were included. Absolute coronary flow (Q) and microvascular resistance (Rμ) were measured in the LAD using continuous intracoronary thermodilution at rest and during hyperaemia before and after TAVI, and at 6-month follow-up. Total myocardial mass and LAD-specific mass were quantified by echocardiography and cardiac computed tomography. Regional myocardial perfusion (QN) was calculated by dividing absolute flow by the subtended myocardial mass.

RESULTS: In 51 patients, Q and R were measured at rest and during hyperaemia before and after TAVI; in 20 (39%) patients, measurements were also obtained 6 months after TAVI. No changes occurred in resting and hyperaemic flow and resistance before and after TAVI nor after 6 months. However, at 6-month follow-up, a notable reverse LV remodelling resulted in a significant increase in hyperaemic perfusion (QN,hyper: 0.86 [interquartile range {IQR} 0.691.06] vs 1.20 [IQR 0.99-1.32] mL/min/g; p=0.008; pre-TAVI and follow-up, respectively) but not in resting perfusion (QN,rest: 0.34 [IQR 0.30-0.48] vs 0.47 [IQR 0.36-0.67] mL/min/g; p=0.06).

CONCLUSIONS: Immediately after TAVI, no changes occurred in absolute coronary flow or coronary flow reserve. Over time, the remodelling of the left ventricle is associated with increased hyperaemic perfusion.

Sign in to read
the full article

Forgot your password?
No account yet?
Sign up for free!

Create my pcr account

Join us for free and access thousands of articles from EuroIntervention, as well as presentations, videos, cases from PCRonline.com

Volume 20 Number 19
Oct 7, 2024
Volume 20 Number 19
View full issue


Key metrics

Suggested by Cory

Clinical research

10.4244/EIJ-D-22-00621 Feb 20, 2023
Long-term changes in coronary physiology after aortic valve replacement
Sabbah M et al
free

Letter to the editor

10.4244/EIJ-D-22-00998 Mar 20, 2023
Letter: Coronary physiology in severe aortic stenosis: solely a matter of increased coronary resting flow?
Minten L et al
free

Clinical research

10.4244/EIJ-D-23-00735 Nov 19, 2023
Characterisation of coronary microvascular dysfunction in patients with severe aortic stenosis undergoing TAVI
Scarsini R et al
free

Reply to the letter to the editor

10.4244/EIJ-D-22-01031 Mar 20, 2023
Reply: Coronary physiology in severe aortic stenosis: solely a matter of increased coronary resting flow?
Sabbah M et al
free

Original Research

10.4244/EIJ-D-23-00735 Mar 4, 2024
Characterisation of coronary microvascular dysfunction in patients with severe aortic stenosis undergoing TAVI
Scarsini R et al
free

Editorial

10.4244/EIJ-E-22-00052 Feb 20, 2023
Understanding the mechanism of improved CFR after TAVR/SAVR – the importance of basal flow
Kern M and Seto AH
free

10.4244/AIJV14I2A19 Jun 20, 2018
Time for caution interpreting coronary physiology in aortic stenosis?
Davies J and Piek J
free
Trending articles
309.93

State-of-the-Art Review

10.4244/EIJ-D-21-00695 Nov 19, 2021
Transcatheter treatment for tricuspid valve disease
Praz F et al
free
166.7

Expert review

10.4244/EIJ-D-21-00690 May 15, 2022
Crush techniques for percutaneous coronary intervention of bifurcation lesions
Moroni F et al
free
92.2

State-of-the-Art Review

10.4244/EIJ-D-20-01296 Aug 27, 2021
Management of cardiogenic shock
Thiele H et al
free
76

State-of-the-Art

10.4244/EIJ-D-23-00840 Sep 2, 2024
Aortic regurgitation: from mechanisms to management
Baumbach A et al
free
72.85

State-of-the-Art

10.4244/EIJ-D-24-00386 Feb 3, 2025
Mechanical circulatory support for complex, high-risk percutaneous coronary intervention
Ferro E et al
free
58.3

Clinical research

10.4244/EIJ-D-23-00344 Sep 18, 2023
Clinical outcomes of TAVI with the Myval balloon-expandable valve for non-calcified aortic regurgitation
Sanchez-Luna JP et al
free
56.65

Clinical research

10.4244/EIJ-D-20-01155 Oct 20, 2021
A deep learning algorithm for detecting acute myocardial infarction
Liu W et al
free
33.9

CLINICAL RESEARCH

10.4244/EIJ-D-17-00381 Oct 11, 2017
Stent malapposition and the risk of stent thrombosis: mechanistic insights from an in vitro model
Foin N et al
free
33.65

State-of-the-Art

10.4244/EIJ-D-23-00606 Jan 1, 2024
Targeting inflammation in atherosclerosis: overview, strategy and directions
Waksman R et al
free
X

The Official Journal of EuroPCR and the European Association of Percutaneous Cardiovascular Interventions (EAPCI)

EuroPCR EAPCI
PCR ESC
Impact factor: 7.6
2023 Journal Citation Reports®
Science Edition (Clarivate Analytics, 2024)
Online ISSN 1969-6213 - Print ISSN 1774-024X
© 2005-2025 Europa Group - All rights reserved