DOI:

Tryton Side-Branch Stent

Aaron V. Kaplan1,2*, M.D; H. Richard Davis2

Description

The Tryton Side-Branch Stent™ is a slotted tube balloon deployable stent with a modular design comprise of three zones: Distal (Side-Branch) Zone, Central (Transition) Zone and Proximal (Main Vessel) Zone (Figure 1).

Figure 1. Schematic representing the Tryton Side-Branch Stent showing three zones: Distal (Side-Branch) Zone, Central (Transition) Zone and Proximal (Main Vessel) Zone. When positioned correctly within the vasculture the Side-Branch Zone resides in the side-branch, Transition Zone at the side-branch origin and the Main Vessel Zone in the main vessel proximal to the side-branch origin.

Tryton performs like a standard high-performance workhorse stent, i.e., balloon expandable, tracking over a single wire and axially oriented without the need for rotational orientation. The Tryton is simply tracked over a guidewire placed in the side-branch, such that the transition zone is at the side-branch origin. To insure precise delivery, the Tryton Side-Branch Stent is mounted on a balloon with four shaft markers, 2 standard proximal/distal stent markers, and 2 additional markers delineating the Transition Zone. The Tryton Stent is deployed after which the guidewire initially placed in the side-branch is repositioned into the distal main vessel. The Tryton stent is compatible with any standard workhorse stent (bare metal or DES), which is tracked into the Main Vessel Zone of the Tryton Stent and between specially designed fronds exiting into the distal main vessel stent (Figure 2).

Figure 2. Schematic representing the spacial relationship between the Tryton Side-Branch Stent (deployed) with an undeployed main vessel stent. The distal end of the main vessel stent has been tracked through the proximal Main Vessel Zone of the Tryton Stent, between the specially designed fronds and into the distal main vessel.

The main vessel stent is deployed after which a kissing balloon inflation is performed. Employing this strategy provides a means to definitively treat bifurcation lesions with similar coverage and hoop strength currently available with state of the art stents used in straight lesions (Figure 3).

Figure 3. Photograph of a Tryton Side-Branch Stent deployed in a plexiglass model in combination with a Cypher Stent (Cordis/ Johnson&Johnson, Miami, FL) using the protocol outlined within main text.

History

Tryton Medical, Inc. is a privately held company with offices in Newton, Massachusetts, USA founded to develop devices to treat bifurcation lesions within the coronary, cerebral and peripheral circulations.

Volume 2 Number 2
Aug 20, 2006
Volume 2 Number 2
View full issue


Key metrics

Suggested by Cory

Editorial

10.4244/EIJ-E-25-00029 Aug 4, 2025
Coronary sinus Reducer for the treatment of refractory angina: how much more evidence do we need?
Al-Lamee R and Foley M
free

Expert Review

10.4244/EIJ-D-24-00812 Aug 4, 2025
Management of device embolisation during left atrial appendage closure
Kefer J et al
free

Research Correspondence

10.4244/EIJ-D-24-01123 Aug 4, 2025
Coronary sinus narrowing for the treatment of refractory angina: one-year results of the REDUCER-I study
Verheye S et al

Editorial

10.4244/EIJ-E-25-00030 Aug 4, 2025
Expanding the boundaries of M-TEER: is it time to treat moderate secondary mitral regurgitation?
Adamo M and Riccardi M
free

Editorial

10.4244/EIJ-E-25-00035 Aug 4, 2025
The promise and pitfalls of registries for transcatheter tricuspid valve intervention
Hahn R
free

Original Research

10.4244/EIJ-D-24-01174 Aug 4, 2025
Transcatheter valve repair of tricuspid regurgitation: 1-year outcomes from the TriCLASP study
Baldus S et al
Trending articles
224.5

State-of-the-Art Review

10.4244/EIJ-D-21-00426 Dec 3, 2021
Myocardial infarction with non-obstructive coronary artery disease
Lindahl B et al
free
172.9

Focus article

10.4244/EIJY19M08_01 Jan 17, 2020
EHRA/EAPCI expert consensus statement on catheter-based left atrial appendage occlusion – an update
Glikson M et al
free
81.65

State-of-the-Art

10.4244/EIJ-D-24-00066 Apr 21, 2025
Management of complications after valvular interventions
Bansal A et al
free
49.6

Original Research

10.4244/EIJ-D-25-00331 May 21, 2025
One-month dual antiplatelet therapy followed by prasugrel monotherapy at a reduced dose: the 4D-ACS randomised trial
Jang Y et al
open access
49.6

Original Research

10.4244/EIJ-D-25-00331 Jul 21, 2025
One-month dual antiplatelet therapy followed by prasugrel monotherapy at a reduced dose: the 4D-ACS randomised trial
Jang Y et al
open access
31.1

Expert Review

10.4244/EIJ-D-24-00535 May 5, 2025
Catheter-based techniques for pulmonary embolism treatment
Costa F et al
30.4

Clinical Research

10.4244/EIJ-D-21-00363 Jan 28, 2022
Membranous septum morphology and risk of conduction abnormalities after transcatheter aortic valve implantation
Jørgensen T et al
free
23.7

Expert review

10.4244/EIJ-D-18-01180 Feb 20, 2020
Technical aspects in coronary sinus Reducer implantation
Giannini F et al
free
X

PCR
Impact factor: 9.5
2024 Journal Citation Reports®
Science Edition (Clarivate Analytics, 2025)
Online ISSN 1969-6213 - Print ISSN 1774-024X
© 2005-2025 Europa Group - All rights reserved