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Background
Nowadays, there is great interest in interventional cardiology and in 
the medical scientific community in general in the development of 
prognostic models in the context of survival analysis. In particular, 
physicians have a variety of tests and biomarkers at their disposal to 
aid them in optimising medical care, and in many cases these tests 
are performed regularly in time to provide a better picture of the 
disease progression of a patient.

When it comes to the statistical analysis of this type of data we 
need to pay particular attention to the fact that we have two types of 
covariates/predictors to consider, i.e., covariates whose values are 
fixed from baseline to the end of the study, and covariates whose 
values change during follow-up. Statistical analysis of the second 
type of covariates can prove challenging due to the special charac-
teristics these covariates have, namely that measurements on the 
same patient are correlated and that very often, based on the values 
of these covariates (e.g., when a biomarker exceeds a specific 
threshold), it may be decided that patients need to be excluded from 
a study (informative censoring). Motivated by this context the aim 
of this paper is to explain the challenges in time-varying covariates 
and how analysts should approach them in practice.

As an illustrative example we will consider data from a study 
conducted by the Department of Cardio-Thoracic Surgery of the 
Erasmus Medical Center in The Netherlands which includes 286 
patients who received a human tissue valve in the aortic position in 
the hospital between 1987 and 20081. Aortic allograft implantation 
has been used for a variety of aortic valve or aortic root diseases. 

Initial reports on the use of either fresh or cryopreserved allografts 
date from the early years of heart valve surgery. Major advantages 
ascribed to allografts are their excellent haemodynamic characteris-
tics as a valve substitute. A major disadvantage of using human tis-
sue valves is, however, their susceptibility to tissue degeneration 
and the subsequent need for reinterventions. Re-operations on the 
aortic root are complex, with substantial operative risks, and mor-
tality rates in the range of 4-18%1. In this study, a total of 77 (26.9%) 
patients received a subcoronary implantation (SI), and the remain-
ing 209 patients a root replacement (RR) with an allograft. These 
patients were followed prospectively over time with annual tele-
phone interviews and biennial standardised echocardiographic 
assessment of valve function until July 8, 2010. Echo examinations 
were scheduled at six months and one year postoperatively and 
biennially thereafter, and at each examination echocardiographic 
measurements of aortic gradient (mmHg) were taken. By the end of 
follow-up (median 3.75 years; IQR 5.87 years; total number accu-
mulated person-years: 2,935), 1,241 aortic gradient measurements 
were recorded with an average of five measurements per patient 
(SD 2.3 measurements), 59 patients had died, and 73 patients 
required a re-operation on the allograft.

Types of time-varying covariates
Before we introduce the statistical tools we have available for 
measuring the effect of time-varying covariates, we should first dis-
tinguish between two different types of such covariates, namely, 
external or exogenous covariates and internal or endogenous 
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covariates. The reason it is important to make this distinction is that 
endogenous covariates require special treatment from a statistical 
analysis point of view compared to exogenous ones.

Definition
A time-varying covariate is exogenous if its value at any time point 
t is not affected by an event occurring at an earlier time point s<t.

Examples of exogenous covariates are the nurse who took the 
blood sample or performed the echo, the period of the year (e.g., 
winter versus summer) and environmental factors (e.g., pollution 
levels). On the other hand, all covariates measured on the patient, 
e.g., biomarkers, are endogenous. To make this distinction clearer 
let us consider two time-varying covariates in the context of our 
motivating study, namely the aortic gradient levels which have been 
measured during follow-up and the nurse/physician who recorded 
the measurement. Suppose that for a particular patient re-operation 
is required after s=5 years from the initial valve replacement. It is 
directly evident that at a future time point, say t=5.2 years, the level 
of aortic gradient will be affected by the fact that this patient under-
went re-operation, whereas the choice of which nurse (from the 
ones assigned to this study) will measure the aortic gradient at the 
same time point t=5.2 years will not be affected by this re-opera-
tion. The next section explains in detail why it is important to make 
this distinction for the statistical analysis of such data.

Methods for survival analysis with time-varying 
covariates
The standard statistical tool which is used to analyse survival data 
is the Cox regression model. In its basic form we assume that the 
hazard depends only on covariates whose value is constant during 
follow-up, such as age at baseline, sex and randomised treatment. 
When there is interest in investigating whether time-varying covari-
ates are associated with the risk for an event, the extended Cox 
model can be employed2. This is, in fact, a version of the standard 
Cox model which can handle both baseline and time-varying covar-
iates, and is available in most standard statistical software pack-
ages. However, unfortunately, this extended Cox model is only 
theoretically valid for exogenous time-varying covariates, and it is 
not optimal when it comes to studying repeated measurements of 
biomarkers or of other patient parameters3,4. The reasons behind the 
inadequacy of the Cox model are best explained via Figure 1 which 
shows the aortic gradient measurements of one patient from the aor-
tic valve data set. As can be seen, the Cox model assumes that from 
one visit to the next the marker’s level remains constant, and then 
a sudden change in the levels of aortic gradient occurs on the day 
the patient comes to the study centre to provide a new measurement 
(Figure 1, dashed line). It is of course evident that such an assump-
tion is quite unreasonable for a biomarker. In particular, we expect 
aortic gradient, and patient parameters in general, to change con-
tinuously over time, as the condition of the patient also changes. 
Treating an endogenous time-varying covariate as an exogenous 
one and just fitting the extended Cox model would result in bias for 
the estimated effect of this covariate5 (i.e., effects are estimated as 
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Figure 1. Graphical representation of the conceptual differences 
between the extended Cox model and the joint model.

smaller than they truly are), and eventually mask its true predictive 
ability. We should mention that, even though some refinements of 
the extended Cox model have been proposed in the literature to set-
tle some of the aforementioned issues, these have not been com-
pletely resolved within the framework of Cox models6.

An alternative statistical modelling framework which addresses 
these issues is the framework of joint models for longitudinal and 
survival data3,4,7. This is a relatively new and fast developing field 
of biostatistics research which has shown very promising results in 
the analysis of serial biomarker measurements8-14. The basic intui-
tive idea behind joint models is to combine the Cox model with 
a mixed-effects model. Mixed-effects models are a class of statisti-
cal model that is used to analyse correlated repeated measurements 
data, such as the aortic gradient levels measured repeatedly over 
time for the same patients in our study population. The appealing 
feature of these models is that they estimate the biomarker profile 
over time of each individual patient (Figure 1, solid line). Following 
on from the previous discussion, this makes more sense from a bio-
logical point of view compared to the extended Cox model, because 
these models explicitly postulate that biomarker levels evolve 
smoothly over time and do not remain constant between visits. 
Additional advantages of these models are that they can work even 
when measurements of the patients have not been taken at the same 
time points, and that missing biomarker measurements are auto-
matically handled under the missing at random assumption (i.e., the 
reasons for a missing measurement may depend on previous 
observed responses, e.g., the physician decides to exclude a patient 
from the study when the biomarker exceeds a specific threshold). 

To illustrate the virtues of joint models versus the traditional Cox 
models, we compare the two models in two different analyses of the 
aortic valve data set. In particular, an important aspect when model-
ling time-varying covariates is the functional relationship between 
the covariate and the hazard of the event of interest. By functional 
relationship we mean the exact specification of which of the past val-
ues of the biomarker up to any time point t are associated with the 
hazard at t. In general, there are several options for specifying this 
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relationship and its appropriate form and, in many cases, it is chal-
lenging to find. For our illustrations we consider two functional rela-
tionships, namely, in Analysis I we postulate that the hazard of 
re-operation or death at any time t depends on the square root trans-
form of aortic gradient at the same time point, whereas in Analysis II 
we postulate that the hazard at time t depends on the area under the 
longitudinal profile of each patient up to t. The square root transform 
was used because on the original scale aortic gradient has a skewed 
distribution, whereas on the transformed scale the distribution is 
much closer to normal (decision based on a Q-Q plot). In plain words, 
in Analysis I we study how strongly associated is the current value of 
aortic gradient to the hazard, while in Analysis II we study the aggre-
gated effect of aortic gradient to the hazard. In addition, both analyses 
have been corrected for type of operation, age, sex and BMI. In the 
appendix we provide syntax for fitting joint models in the R statisti-
cal software environment using package JM15 (Online Appendix).

Results
The results under Analyses I and II are presented in Table 1 which 
shows hazard ratios and the corresponding 95% confidence intervals 
under the joint model and the time-varying Cox model for each of the 
two analyses. We observe that there are differences between the two 
modelling approaches, which are more evident for the effect of aortic 
gradient. In particular, under Analysis I and as is medically expected, 
both the joint model and the Cox model show that increasing aortic 
gradient is associated with an increase in the risk for re-operation or 
death. However, we note that, as explained earlier, the Cox model 
underestimates the strength of this association. Under Analysis 
II we observe more prominent differences, with the time-varying 
Cox model showing an opposite relationship to the one expected, 
namely that, if a patient on average had higher aortic gradient levels 

Table 1. Hazard ratios and associated 95% confidence intervals 
from the joint and extended Cox models fitted to the aortic valve 
data set assuming two different functional relationships between 
aortic gradient and the hazard of re-operation or death.

Joint model Extended Cox model

Hazard ratio (95% CI)  Hazard ratio (95% CI)

Analysis I. Current aortic gradient

 (Aortic gradient)1/2 1.58 (1.38; 1.80) 1.45 (1.30; 1.61)

Type OP=root replac. 1.42 (0.95; 2.12) 1.56 (1.04; 2.33)

Age 1.02 (1.00; 1.03) 1.01 (0.99; 1.03)

Sex=female 0.87 (0.58; 1.29) 0.93 (0.63; 1.38)

BMI 0.96 (0.90; 1.02) 0.98 (0.92; 1.04)

Analysis II. Aggregated aortic gradient

(Aortic gradient)1/2 1.03 (1.01; 1.05) 0.96 (0.94; 0.98)

Type OP=root replac. 1.35 (0.91; 2.00) 0.99 (0.67; 1.47)

Age 1.00 (0.99; 1.02) 0.99 (0.98; 1.01)

Sex=female 0.88 (0.60; 1.30) 0.99 (0.68; 1.48)

BMI 0.95 (0.90; 1.01) 1.00 (0.95; 1.06)

compared to another patient up to a particular follow-up time, then 
the former patient has a lower risk than the latter. This unusual result 
can be explained by the fact that the ordinary Cox model does not 
appropriately account for the endogenous nature of aortic gradient. 
The results from both analyses are in line with theoretical work and 
simulation studies3,4,14, and convincingly demonstrate that appropri-
ate modelling of serial biomarker levels is required to measure accu-
rately how strongly a biomarker is related to the event of interest and 
also reveal its true potential for prediction.

Conclusions and recommendations
An inherent characteristic of many medical conditions is their 
dynamic nature. That is to say, the rate of disease progression is not 
only different from patient to patient but also dynamically changes 
over time for the same patient. Hence, it is medically relevant to 
investigate whether serial evaluations of biomarkers and other patient 
parameters can ultimately provide a better understanding of the dis-
ease progression and predict patient prognosis better than a single 
value assessment (i.e., baseline or last available). Statistical methods 
that offer this capability have the potential to become a very valuable 
tool in everyday medical practice, if implemented in the patient med-
ical file. More specifically, at any given time, physicians will be able 
to use both baseline and accumulated serial biomarker information 
for a patient to gain a better understanding of the disease dynamics. 
This information, coupled with medical experience, will enable them 
to tailor decisions to each specific patient separately, and therefore 
optimise patient survival and/or decrease morbidity levels.

The aortic valve study illustrates the use of joint models to predict 
outcome in patients with aortic allografts, showing that joint models 
are a powerful tool for optimising prediction of prognosis, taking into 
account both standard baseline risk factors and serial aortic gradient 
measurements. This concept can be applied to any chronic medical 
condition with serial biomarker measurements, and can be extended 
to include multiple serial biomarkers. In the example of aortic allo-
grafts, one could also consider aortic regurgitation, another measure 
of valve dysfunction which is repeatedly measured over time.

Even though time-varying covariates can greatly facilitate moni-
toring and prediction of disease progression, careful statistical anal-
ysis of such data is required in order to unleash their true potential. 
In this context, the traditional Cox model is not the optimal tool to 
use, and analysts could gain more by exploring the capabilities of 
modern statistical techniques, such as the framework of joint mod-
els for longitudinal and survival data.
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Online data supplement
Appendix 1. R code to fit extended Cox models and joint models.
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Online data supplement
R code to fit extended Cox models and joint models
Description: This R script illustrates the basic use of the R package JM for fitting joint models for longitudinal and survival data. Illustrations 
are based on the AIDS data set that is available with the package. Author: Dimitris Rizopoulos.

# load first package JM to make everything available

library(“JM”)

# AIDS data set
# biomarker: CD4 (square root scale)
# follow-up time: obstime
# randomized treatment: drug
# Event time (death or censored): 

# linear mixed effects model with random intercepts + random slopes
# data ‘aids’ contains the longitudinal information in the long format
# (i.e., multiple rows per patient)
lmeFit.aids <- lme(CD4 ~ obstime + obstime:drug, 
 random= ~ obstime | patient, data=aids)

summary(lmeFit.aids)

# Cox PH model; data ‘aids.id’ contains the survival information in the wide format
# (i.e., one row per patient)
coxFit.aids <- coxph(Surv(Time, death) ~ drug, data = aids.id, x = TRUE)

summary(coxFit.aids)

# the joint model: jointModel() takes the above fitted models as arguments, and fits the
# joint model; below we fit a joint model with a relative risk submodel
# for the event time outcome, in which the baseline risk function is assumed
# piecewise-constant
jointFit.aids  <- jointModel(lmeFit.aids, coxFit.aids, timeVar = “obstime”, 
 method = “piecewise-PH-aGH”)

summary(jointFit.aids)


