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Abstract
Propensity score (PS) techniques are useful if the number of poten-
tial confounding pretreatment variables is large and the number of 
analysed outcome events is rather small so that conventional mul-
tivariable adjustment is hardly feasible. Only pretreatment charac-
teristics should be chosen to derive PS, and only when they are 
probably associated with outcome. A careful visual inspection of 
PS will help to identify areas of no or minimal overlap, which sug-
gests residual confounding, and trimming of the data according to 
the distribution of PS will help to minimise residual confounding. 
Standardised differences in pretreatment characteristics provide 
a useful check of the success of the PS technique employed. As 
with conventional multivariable adjustment, PS techniques cannot 
account for confounding variables that are not or are only imper-
fectly measured, and no PS technique is a substitute for an ade-
quately designed randomised trial.

Introduction
Well-designed large-scale randomised clinical trials (RCTs) are the 
most reliable approach for investigating the causal effect between 
an intervention and clinical outcomes. Adequately concealed ran-
domisation1 of several hundred or even several thousand patients 

ensures that patient groups are almost identical regarding any con-
founding factors, measured or unmeasured, known or unknown 
at the time of randomisation. Confounding factors are variables 
that could distort our interpretation of the presence, direction and 
magnitude of a true causal effect between interventions and clini-
cal outcomes2. The feasibility of RCTs may be called into question 
by ethical or economic constraints. The generalisability of results 
from RCTs may also be limited since the patient population is often 
highly selected due to restrictive inclusion criteria. In addition, 
interventions may be more carefully implemented in RCTs, with 
a high compliance of carers and patients to a standardised protocol, 
and may not be representative of what is actually implemented in 
routine clinical settings.

Observational studies are therefore often conducted, either to 
explore further how results of RCTs translate to routine clinical set-
tings or to obtain information about the effect of an intervention 
in the absence of RCTs. In these studies, the allocation of patients 
to treatment groups is based on referral patterns and the clinical 
reasoning of the therapist. Because the choice of an intervention 
is probably related to the risk factor of patients, results of obser-
vational studies may be confounded. This type of confounding is 
known as “confounding by indication”3.
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Different statistical methods can be used to minimise the influ-
ence of confounding by indication. Arguably the most commonly 
used method, a multivariable regression model, adjusts for patient 
characteristics (i.e., covariates) that are likely to confound the esti-
mation of the treatment effect. When too many covariates are used 
for adjustment or the number of outcome events is too small, the 
validity of multivariable models may be compromised. A rule of 
thumb suggests that there should be at least 10 outcome events for 
every covariate included in a multivariable model to prevent over-
fitting of the model to the data4,5, which results in spurious associa-
tions and/or instability of the model.

Propensity score modelling
Propensity score (PS) models may be used to control for confound-
ing by indication even when the number of covariates is large or 
outcome events are rare. Unlike conventional multivariable adjust-
ments, which model outcomes (i.e., they are based on estimating 
the association of baseline variables with clinical outcome), PS 
are based on modelling treatment selection (i.e., they are based on 
estimating the causal association of pre-treatment variables with 
interventions). In the typical case there will be considerably more 
patients who received a given intervention than patients who expe-
rienced a given outcome; therefore, the risk of overfitting is smaller 

for this approach than for conventional multivariable adjustment, 
which is one of the three major advantages of PS techniques.

A PS quantifies the probability of a patient from zero to one to 
receive the experimental intervention on which the PS is modelled, 
given all the pretreatment characteristics included in the model 
that were used for selecting the treatment a patient received. For 
instance, in an observational study comparing transcatheter aortic 
valve implantation (TAVI) with surgical aortic valve replacement 
(SAVR) in patients with severe aortic stenosis published in 2009 
in EuroIntervention, elderly patients and more severely diseased 
patients were more likely to receive the experimental TAVI than the 
control SAVR (Table 1)6. The PS model estimates the associations 
with all relevant variables in a multivariable manner.

We feel the need to emphasise that the model should include all 
pretreatment variables that are likely to be associated with the clin-
ical outcome of interest, irrespective of whether they are associ-
ated with treatment selection. So, in the example of Table 1, all 
variables should be used for the PS model, including diabetes mel-
litus, for example, which does not appear to be associated with 
the type of intervention (p=0.76), but is certainly associated with 
the clinical outcome of interest, in this instance overall mortality. 
Conversely, a variable that is associated with treatment selection, 
but not with outcome (i.e., an instrumental variable), should not be 

Table 1. Crude and adjusted between-group comparisons of pretreatment characteristics.

Aortic valve replacement Cardioplegic solution

Experi-
mental

Control
Crude IPTW Experi-

mental
Control

Crude IPTW

Diff p-value Diff p-value Diff p-value Diff p-value

Age, yrs (SD) 82.8 (5.5) 69.9 (11.4) 1.44 <0.001 –0.43 0.19 64.6 (13.6) 67.3 (13.0) –0.21 0.35 –0.18 0.13

Female, n (%) 64 (56.1) 408 (41.5) 0.32 0.001 –0.22 0.35 253 (35.0) 21 (25.3) 0.21 0.087 0.05 0.71

Logistic EuroSCORE, % (SD) 20.1 (13.4) 9.1 (10.2) 0.93 <0.001 0.00 0.98 8.9 (10.8) 10.2 (11.9) –0.11 0.007 0.11 0.27

NYHA Class, n (%) I to II 15 (13.2) 550 (55.6) –0.97 <0.001 –0.38 0.089 499 (69.1) 62 (74.7) –0.12 0.32 –0.07 0.61

III 78 (68.4) 356 (35.3) 0.70 <0.001 0.07 0.79 191 (26.5) 17 (20.5) 0.13 0.26 0.03 0.80

IV 21 (18.4) 102 (10.1) 0.24 0.008 0.33 0.21 32 (4.4) 4 (4.8) –0.02 0.89 0.08 0.50

Diabetes mellitus, n (%) 26 (22.8) 243 (24.1) –0.03 0.76 –0.22 0.13 102 (14.1) 11 (13.3) 0.02 1.00 0.02 0.87

Hypertension, n (%) 72 (63.1) 631 (62.6) 0.01 0.91 –0.32 0.22 462 (64.0) 50 (60.2) 0.08 0.47 0.14 0.29

Coronary artery disease, n (%) 64 (56.1) 512 (50.8) 0.11 0.28 –0.15 0.53 123 (17.0) 23 (27.7) –0.26 0.023 –0.03 0.82

Previous coronary bypass surgery, n (%) 28 (24.6) 42 (4.2) 0.61 <0.001 –0.06 0.51 26 (3.6) 5 (6.0) –0.11 0.36 0.02 0.81

Left ventricular 
ejection fraction, 
n (%)

>50% 67 (58.8) 834 (82.7) –0.55 <0.001 0.29 0.083 617 (85.5) 66 (79.5) 0.16 0.16 –0.02 0.84

30–50% 40 (35.1) 135 (13.4) 0.52 <0.001 –0.22 0.17 88 (12.2) 14 (16.9) –0.13 0.23 –0.02 0.88

<30% 7 (6.1) 39 (4.9) 0.10 0.25 –0.18 0.18 17 (2.4) 3 (3.6) –0.07 0.50 0.11 0.42

Atrial fibrillation, n (%) 22 (19.3) 90 (8.9) 0.30 <0.001 –0.20 0.11 60 (8.3) 10 (12.0) –0.12 0.30 –0.05 0.71

Cerebrovascular disease, n (%) 20 (17.5) 50 (5.0) 0.41 <0.001 –0.17 0.060 47 (6.5) 4 (4.8) 0.08 0.81 0.03 0.86

Peripheral vascular disease, n (%) 21 (18.4) 47 (4.7) 0.44 <0.001 0.09 0.74 30 (4.2) 3 (3.6) 0.03 1.00 0.17 0.13

COPD, n (%) 24 (21.1) 134 (13.3) 0.21 0.024 0.05 0.85 84 (11.6) 10 (12.0) –0.01 0.86 0.06 0.63

Pulmonary hypertension, n (%) 34 (29.8) 86 (8.5) 0.56 <0.001 0.09 0.74 35 (4.8) 3 (3.6) 0.06 0.79 0.09 0.40

Creatinine above 200 μmol/L, n (%) 7 (6.1) 31 (3.1) 0.15 0.086 –0.02 0.90 11 (1.5) 3 (3.6) –0.13 0.17 –0.02 0.85

MI within 90 days of procedure, n (%) 4 (3.5) 34 (3.4) 0.01 0.94 –0.21 0.005 6 (0.8) 2 (2.4) –0.12 0.20 –0.08 0.49

COPD: chronic obstructive pulmonary disease; Diff: standardised differences between patients in the experimental and control groups; IPTW: inverse probability treatment weighting after 
trimming of 2.5% of tails as described in the text; MI: myocardial infarction; NYHA: New York Heart Association
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included in the model7,8. This may seem counterintuitive at first, 
but makes sense when the aim of PS models is considered: to mini-
mise the effect of confounding on estimating the causal relationship 
between an intervention and an outcome. If the choice of TAVI, for 
some esoteric reason, were associated with the signs of the zodiac, 
this variable should therefore not be included in the model since 
we do not really have a scientific rationale to suggest that signs of 
the zodiac are causally related to overall mortality. If it is unclear 
for a variable that is associated with treatment selection whether it 
is also associated with outcome or whether it is merely an instru-
mental variable, we will include it in the PS model7. Technically, 
a multivariable logistic or probit regression9 with type of treat-
ment as dependent variable and all the pretreatment variables dis-
cussed above as independent variables will be used to generate PS. 
Variables collected at or after treatment initiation absolutely must 
not be used7,10. These variables need to be considered a result of the 
treatment decision and can by definition not be causally related to 
the treatment decision.

Propensity score models eliminate confounding when two con-
ditions are met11. The first condition is that all relevant confound-
ing variables are measured and used to calculate the patients’ PS 
to receive the experimental treatment. Once all confounding var-
iables are controlled for, the treatment decision itself (before the 
actual treatment takes place) should no longer predict the outcome. 
The second condition is that all patients included in the study have 
a non-null probability to receive either the experimental or control 
treatment. This means that, at the time of inclusion in the study, all 
patients had to be potential candidates to receive either of the two 
compared interventions. This is more or less analogous to patients 
included in an RCT: only patients who qualify for either of the two 
compared interventions will be included in the trial, but not those 
who only qualify for one of the two interventions, but not the other. 
Only when both conditions are fully met will PS models provide 
unbiased estimates of the treatment effect.

Visual inspection
Once PS are generated, their distribution can and should be visually 
inspected. This is the second major advantage of PS techniques. 
We use smoothed Kernel probability density estimates12,13 of the PS 
of the two groups to do so, but simple histograms will also do the 
job. Figure 1A shows the distribution of PS in the above-mentioned 
comparison of TAVI with SAVR in patients with aortic stenosis6. 
The distribution of PS in experimental patients receiving TAVI is 
almost uniformly distributed between zero and one. Conversely, 
in control patients receiving SAVR, the distribution is completely 
skewed with a thin long tail towards the right and the Kernel prob-
ability density falling to values near null at PS greater than 0.2. So, 
even if there are few patients with PS between 0.2 and 0.85, which 
corresponds to probabilities of 20% and 85% of SAVR patients 
to receive TAVI given their pretreatment characteristics, the thin 
long tail spread along the null between 0.2 and 0.85 indicates that 
we cannot be certain that the actual probability of these patients to 
receive TAVI is anything else but zero.
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Figure 1. Crude distribution of propensity scores for three clinical 
examples. A) High probability of residual confounding. B) Low to 
moderate probability of residual confounding. C) Randomised trial: 
no residual confounding.

An 81-year-old SAVR patient with a PS of 0.5, for example, may 
look on paper as if she has had a 50% chance to receive TAVI, but 
at clinical inspection one would immediately grasp that she appears 
biologically much younger, has only minor severity of her comor-
bid conditions, is participating fully in life and shows no signs of 
frailty, which made her an extremely likely candidate to receive 
SAVR despite her age and rendered her practically ineligible for 
receiving TAVI6. In our group, we consider this issue when the 
Kernel probability density estimate permanently drops below 0.5, 
but we are not aware of a generally agreed cut-off. In any case, 
long thin tails of PS that spread near the null point indicate a high 
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probability of residual confounding (here biological rather than 
chronological age, frailty, severity of comorbid conditions), which 
may severely distort results, as indeed was the case here6: conven-
tional analyses with multivariable adjustment indicated a threefold 
increase in the odds of death with TAVI as compared with SAVR 
(OR 3.05, 95% CI: 1.09 to 8.51) at 30 days6, when the only ran-
domised trial available at the time indicated a trend towards a lower 
overall mortality at 30 days with TAVI as compared with SAVR 
(OR 0.53, 95% CI: 0.24 to 1.14)14.

Figure 1B shows the distribution of PS in an observational com-
parison of two cardioplegic solutions used in patients undergo-
ing SAVR at our centre (unpublished). Compared with Figure 1A, 
there is a much higher overlap of the distributions of PS between 
the experimental and control groups, tails are short, Kernel den-
sity estimates hardly fall below 0.5, and there is considerably less 
asymmetry of the two distributions than observed in Figure 1A for 
SAVR patients. While we acknowledge that the data are observa-
tional in nature and therefore distortion of results through resid-
ual confounding is always possible, we deem residual confounding 
considerably less likely here than in the first example. For further 
comparison, we show the optimal distribution of PS, as derived 
from a randomised trial (Figure 1C). Here, we calculated PS for 
being treated with an experimental coronary stent as compared to 
a control stent in patients with acute myocardial infarction in a trial 
with a 1:1 randomisation15. PS of both groups scatter around 0.5, 
corresponding to a 50% chance to receive an experimental stent, 
with a narrow, symmetrical distribution and near superimposition 
of scores of the two groups.

Propensity score trimming
A logical consequence from the reasoning above is to drop patients 
with PS in areas suspected of residual confounding by trimming 
the tails at both ends of the distribution, which is the third major 
advantage of PS models. Figure 2 shows this for the observational 
comparison of cardioplegic solutions. Here, the larger value of the 
2.5th percentile of the PS was found at 0.797 in the experimental 
group, while the smaller value of the 97.5th percentile was found at 
0.937 in the control group. Observations in both groups that have 
PS beyond these two cut-offs are dropped16. We do not advocate 
trimming based on the common support assumption, even though 
we previously used it6, since the cut-off will depend heavily on the 
parameters used for the Kernel probability density function12,13. 
After trimming, the study population becomes more selected and, 
again analogous to an RCT, results after trimming may not be gen-
eralisable to all patients seen in routine clinical practice.

Use of propensity scores for adjustment
After PS are estimated, they can be incorporated in regression mod-
els used to estimate the treatment effect as specified in Table 2. 
We mostly use matching on PS or inverse probability of treatment 
weighting (IPTW). For matching, we advocate 1:1 or 1:n nearest 
neighbour matching within a calliper of a fifth of the pooled stand-
ard deviation of the PS observed in the two groups after trimming. 
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Figure 2. Trimming of propensity score distributions in both groups 
with cut-offs below the 2.5 percentile in the experimental group and 
above 97.5 percentile in the control group for the comparison of 
cardioplegic solutions.

If the pooled standard deviation of the PS is 0.15, for example, we 
use a calliper width for matching of 0.03 on the PS scale, which 
ranges from zero to one. Using this approach for the logit of the PS 
rather than the PS may even be preferable17. Callipers should not 
be chosen too narrow, since this will lead to an unnecessary loss 
of observations. Matching should be accounted for in the analy-
sis, such as the use of a Cox proportional hazards model for time 
to event data stratified by matched pairs18, or conditional logistic 
regression for binary data.

Figure 3 presents the distribution of PS after 1:1 matching. 
Figure 3A shows a multimodal distribution for the TAVI versus 
SAVR comparison, which suggests instability of the approach even 
though matching worked perfectly and the distribution of PS scores 

Table 2. How propensity scores can be implemented to minimise 
confounding by indication.

Use of propensity scores 
(PS) as continuous 
covariate 

Two explanatory variables are entered 
into the model: type of treatment and 
PS as a linear term.

“Doubly robust” 
multivariable analysis

Multiple explanatory variables are 
entered in the model: type of 
treatment, PS as a linear term, and all 
pretreatment characteristics.

Univariable analysis with 
matching on PS

Use of PS for matching patients in the 
experimental group to patients in the 
control group who have similar 
pretreatment characteristics.

Univariable analysis 
stratified by PS

Patients are stratified according to 
their PS. At least five strata should be 
created. Treatment effects are 
estimated within stratum and then 
combined across strata.

Univariable analysis 
weighted with inverse of 
the probability of 
treatment weights (IPTW)

Use of PS to generate IPTW, which are 
then implemented in the analysis.

“Doubly robust” 
multivariable analysis 
weighted with IPTW

IPTW weighted analysis adjusted for 
all pretreatment characteristics.
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from experimental and control groups are nearly superimposed. 
This suspicion is confirmed when using 1:1 matching for the analy-
sis of 30-day mortality, since we still find completely biased results: 
an OR of 5.00 (95% CI: 0.58 to 42.8) when the best estimate from 
an RCT is 0.53 14. Conversely, the distribution of the PS of the com-
parison of cardioplegic solutions after 1:1 PS matching (Figure 3B) 
looks much like the distribution found in the randomised trial 
(Figure 3C), which suggests that we can be rather confident when 
interpreting results of the 1:1 matched comparison of cardioplegic 
solutions.
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Figure 3. Distribution of propensity scores after trimming and 1:1 
matching. A) High probability of residual confounding. B) Low to 
moderate probability of residual confounding. C) Randomised trial: 
no residual confounding.

A disadvantage of PS matching, particularly when using a ratio 
of 1:1, is the loss of observations. Therefore, we perform weighted 
univariable analyses using inverse probability of treatment weights 
(IPTW) more and more often19. IPTW analyses use the inverse 
of the propensity score as weights in patients who received the 
experimental intervention and the inverse of one minus the pro-
pensity score in patients who received the control intervention 
(assuming that PS is modelled on the experimental intervention). 
Patients who had a low probability of receiving the experimen-
tal intervention but received it anyway will be upweighted in the 
analysis, whereas patients with a high probability of receiving the 
experimental intervention who actually received it will be down-
weighted in the analysis. An alternative to IPTW, which also avoids 
the loss of observations, is stratification of the analysis by PS. For 
this purpose, PS should be stratified at least in quintiles20. If the 
number of observations is large, even smaller strata can be used. 
For an extended description of the different methods, see Heinze 
and Jüni21. Doubly robust methods essentially combine multivari-
able adjustment with PS methods. Two simple approaches are also 
specified in Table 2. Our group has only little experience with these 
approaches6, and we are unaware of clear evidence to suggest that 
these methods are superior to PS matching and IPTW.

Comparison of pretreatment characteristics
Once the PS model is implemented, its success in minimising imbal-
ances in pretreatment characteristics needs to be checked. For this 
purpose, standardised differences will be calculated, dividing the 
difference in arithmetic means or the difference in proportions by 
the respective pooled standard deviation. Differences are expressed 
as standard deviation units and interpreted as effect sizes, as clas-
sically described by Cohen22: ±0.20 standard deviations difference 
represent a small biological difference, ±0.50 a moderate and ±0.80 
a large difference. If a PS technique is successful, one would expect 
standardised differences of ±0.10 standard deviation units or less, 
which is considered an irrelevant difference.

Table 1 presents a comparison of pretreatment characteristics of 
patients included in the comparison of TAVI versus SAVR6, which 
was characterised by the grotesquely skewed distribution of PS in 
SAVR patients and minimal or no overlap of PS with the major-
ity of TAVI patients (Figure 1). The crude analysis of pretreatment 
characteristics of all patients shows dramatic differences, with four 
standardised differences beyond ±0.80, five beyond ±0.50, and 
another five beyond ±0.20. Unsurprisingly, 14 differences are sta-
tistically significant at p<0.05. The IPTW model used after trim-
ming for calculating adjusted standardised differences improves 
the situation somewhat, but nine standardised differences are still 
beyond ±0.20, even though only one is statistically significant, 
which suggests residual baseline imbalances. Of these, six change 
sign, which additionally suggests instability of the approach and 
untrustworthy results. This time, the OR of 30-day mortality is 
1.87 (95% CI: 0.50 to 6.99), which appears less biased than results 
from the PS matched analysis above, but still at odds with the ran-
domised trial14. Even though the previously used approach towards 
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trimming did not differ much from the approach discussed here, 
results of the corresponding IPTW analysis were completely differ-
ent (OR 0.35, 95% CI: 0.04 to 2.72)6.

Table 1 presents a comparison of pretreatment characteristics of 
patients included in the comparison of cardioplegic solution. Here, 
crude standardised differences are considerably less pronounced 
than in the previous example, and IPTW analysis after trimming 
yields minimal standardised differences, with none beyond ±0.20 
and only one beyond ±0.10. Together with Figure 3B, which shows 
a distribution of PS much like that from an RCT, this suggests that 
we can be reasonably confident of the results yielded by PS tech-
niques in this example.

Conclusion
In conclusion, PS techniques are useful if the number of potential 
confounding pretreatment variables is large and the number of ana-
lysed outcome events is rather small so that conventional multivari-
able adjustment is hardly feasible. The steps to take when performing 
a PS analysis are specified in Table 3. Only pretreatment characteris-
tics should be chosen for the PS model, and only when they are prob-
ably associated with outcome. A careful visual inspection of PS will 
help to identify areas of no or minimal overlap, which suggests resid-
ual confounding, and trimming of the data according to the distribu-
tion of PS will help to minimise residual confounding. Standardised 
differences in pretreatment characteristics provide a useful check of 
the success of the PS technique. As with conventional multivariable 
adjustment, PS techniques cannot account for confounding variables 
that are not or are only imperfectly measured, and no PS technique is 
a substitute for an adequately designed randomised trial.

Table 3. Steps to take when conducting a propensity score 
analysis.

1. Select variables that will be used to calculate PS. It is paramount 
that variables are pretreatment characteristics only and probably 
associated with the outcome.

2. Calculate PS for all patients in the data set.

3. Plot Kernel probability density estimates of PS per group and 
inspect.

4. Trim the tails at both ends of the distribution of PS to drop 
patients in areas suspected of residual confounding.

5. Calculate standardised differences expressed in standard 
deviation units of patients’ pretreatment characteristics with the 
same approach as was used to incorporate PS in the outcome 
analysis.

6. Use PS in outcome model to estimate adjusted treatment effect 
estimates, preferably with inverse probability of treatment 
weighting or PS matching.
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