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Abstract
In the early days of coronary angiography, the precise quantification of luminal narrowing was challeng-
ing. The introduction of balloon angioplasty (percutaneous transluminal coronary angioplasty [PTCA]) by 
Andreas Grüntzig in 1977 was perhaps the greatest incentive to the development of quantitative coronary 
angiography (QCA). QCA has played a crucial role in evaluating interventional techniques and assessing 
the results of new technologies. With the advent of drug-eluting stents (DES), QCA metrics such as late 
lumen loss and diameter stenosis (restenosis) proved to be instrumental in assessing new technologies. 
Refinements in QCA with the advent of dedicated bifurcation analysis and three-dimensional (3D) QCA 
have broadened the application of QCA. Beyond angiographic metrics, new developments in the field 
of QCA have introduced the functional component in the assessment of coronary lesions. Angiography-
derived fractional flow reserve (FFR) may be a good tool for diagnosing ischaemia-producing lesions in 
patients with non-complex coronary artery disease. Furthermore, the incremental functional information can 
be used to expand the traditional late lumen loss (LLL) and restenosis concepts.
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Introduction
Coronary angiography has evolved continuously over the past dec-
ades. The understanding of the fractal geometry in the coronary 
tree coupled with the incremental information coming from intra-
coronary imaging, and the simulation of physiologic parameters 
have further refined the technique. This manuscript aims to review 
the history and developments in the field of coronary angiography. 
The current clinical applications including the recent advent of 
angiography-derived fractional flow reserve (FFR) are detailed 
and future perspectives of coronary angiography are discussed. 

Historical perspective
In 1959, the technique of selective coronary angiography was 
introduced by Mason Sones. It gained widespread acceptance, 
becoming the gold standard for assessing obstructive coronary 
artery disease (CAD). In the early days of coronary angiography, 
the precise quantification of luminal narrowing was challenging. 
The pioneer angiographers were urged to read films played at 
rapid frame rates. Stopping the film usually resulted in a blurry 
image difficult to interpret1. Image quality improved rapidly, 
allowing automatic quantification of the degree of stenosis. The 
introduction of balloon angioplasty (percutaneous transluminal 
coronary angioplasty [PTCA]) by Andreas Grüntzig in 1977 was 
perhaps the greatest incentive to the development of quantitative 
coronary angiography (QCA). In the initial experience, Grüntzig 
used to measure the luminal gain obtained after PTCA on optically 

magnified images2. The advances in medical therapy for athero-
sclerosis with the promise of plaque regression also demanded an 
objective and reproducible approach to describe coronary dimen-
sions accurately3. 

By the mid 1980s, the group at the Thoraxcenter in Rotterdam 
under the leadership of Hans Reiber and Patrick W. Serruys 
developed an algorithm for contour detection based on the aver-
age weighted sum of the first- and second-derivative values in 
the brightness level function and applying the so-called minimal 
cost contour detection algorithm4,5. This algorithm was shown 
to be robust and is still used in current QCA software packages 
(Figure 1)6. In the early 1990s, the advent of digital recording for-
mat (Digital Imaging and Communications in Medicine [DICOM]) 
dramatically changed our practice and QCA analysis7,8.

QCA has played a crucial role in evaluating interventional tech-
niques and assessing the results of new technologies. The appli-
cation of QCA to the investigation of coronary stents led to the 
description of late lumen loss and percent diameter stenosis (and 
restenosis), metrics accepted by the community as efficacy end-
points9. Late lumen loss (LLL) has been shown to be associated 
with clinical events at long-term follow-up10. With the advent of 
drug-eluting stents (DES) in the early 2000s, QCA proved to be 
instrumental in assessing the suppression of neointimal hyperpla-
sia. Contemporary trials evaluating the efficacy of newer DES 
relied on the concept of LLL to compare these technologies with 
previous generations. Furthermore, the regulatory agencies in 

Figure 1. Basic aspects of the densitometric technique. A) A matrix is placed over the area selected for analysis from the right coronary 
angiogram encompassing a severe coronary obstruction. B) Pseudo 3-dimensional representation of the brightness information within the 
matrix. The coronary artery can be recognised as a mountain ridge with a deep pass at the site of the obstruction. C) This flow chart of the 
analysis indicates the main procedures followed for the computation of the densitometric area function. D) The brightness profile along one 
particular scanline is plotted. Positions with maximal values of the sum of the first and second derivative functions left and right of the centre 
positions of the artery correspond with the edge positions of the artery. (Reproduced from Serruys et al6)
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Europe, Asia and the United States of America request the assess-
ment of LLL and restenosis rate as part of the clinical develop-
ment programmes for devices9.

In parallel, significant progress in X-ray imaging technology 
was achieved. Improvements of image quality enabled proce-
dural image guidance with online QCA, biplane imaging systems 
improved the safety of percutaneous coronary interventions (PCI) 
by reducing the amount of contrast and radiation, and rotational 
angiography allowed advanced three-dimensional (3D) imaging. 
The developments in the field of QCA are shown in Figure 2.

Coronary angiography: present state
Since the late 1970s, it has been recognised that visual estima-
tion of stenosis severity is unreliable, with marked intra- and 
inter-observer variability11,12. QCA has been shown to provide 
an objective tool of coronary lesion severity quantification using 
a reproducible methodology6,13. Although QCA parameters have 
been widely used as a clinical and, more commonly, as a research 
tool, QCA has its inherent limitations.

“LUMINOGRAM”
One of the most obvious limitations is that visualisation on angio-
graphy is limited to the contrast-filled lumina of the coronary 
arteries. Such a “luminogram” is therefore unable to evaluate the 
total plaque burden (total vessel area minus lumen area), or pro-
cesses such as expansive and constrictive remodelling, which are 
typical for the pathophysiology of atherosclerosis14. Intravascular 
imaging, especially intravascular ultrasound (IVUS), could be 
utilised to analyse this process in vivo. Moreover, although it is 
suitable to analyse the loss in lumen diameter after stent implan-
tation, the angiographic luminogram is unable to analyse the tis-
sue which is overgrowing between and on top of the stent struts. 
Optical coherence tomography (OCT), an intravascular imaging 
modality using infrared light, has shown that different types of 

tissue overgrowth can be visualised, including neointimal hyper-
plasia and neoatherosclerosis15. 

TWO-DIMENSIONAL IMAGING OF A THREE-DIMENSIONAL 
STRUCTURE
Another limitation is that (quantitative) coronary angiography only 
provides a two-dimensional (2D) image while coronary arteries 
are 3D structures. Foreshortening is a common problem of QCA, 
which can be minimised by rotating the C-arm in such a way that 
the tube is directed perpendicular to the coronary segment of inter-
est. One should always bear in mind that stenosis can be eccen-
tric, resulting in different diameters when filmed from different 
angles. We would therefore advise obtaining the images from two 
or three different angles16,17. However, sometimes this is challeng-
ing due to overlapping vessels, especially in bifurcation lesions 
(i.e., obtaining an optimal view to the side branch ostium without 
overlap of the distal main branch and side branch, including left 
main lesions).

QCA: REPRODUCIBILITY
QCA has been shown to have a good inter- and intra-observer repro-
ducibility. However, several factors have been identified which 
potentially influence reproducibility, such as the guiding cathe-
ter size used to calibrate18, the selection of different projections19, 
allowing for manual contour editing20, etc. Besides variability 
within and between observers, there is also a variability between 
core laboratories (core labs)20,21. Core labs are independent facili-
ties that aim to provide unbiased and reproducible results. QCA 
analyses in clinical trials are often performed at such core labs to 
eliminate potential bias from the investigators. However, inter core 
lab variability has been observed and could be the result of differ-
ences in software used20,21, or differences in the standard operating 
procedures (SOPs) followed during QCA analysis20. Finally, as for 
every scientific measurement, the analyses should be performed in 

� Minimum cost contour detection
analysis: fast for simple vessel.

� GFT algorithm: robust for complex
vessel morphology.

� Introduction of automatic
calibration: reduced need for
catheter calibration.

� Simplified portability to digital
DICOM viewers: improvement of
feasibility.

� Single vessel analysis.

� 2D coronary bifurcation analysis.

� 3D coronary (bifurcation)
analysis.

� Co-registration of X-ray
angiography with intravascular
imaging such as IVUS, OCT.

� Functional analysis based on
quantitative image analysis
methods: angiography-derived
FFR, shear stress.

� Spiral groove X-ray tubes:
improvement in cooling power.

� Introduction of digital imaging
(DICOM): no cine film which
needs to be digitised by means of
a frame-grabber before analysis.

� Introduction of the flat panel
detector: elimination of geometric
image distortion.

� Adaptive image processing: reduce 
noise while maintaining contrast.

� DICOM geometric information:
compensate for isocentre offset.
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Figure 2. Developments in the field of (quantitative) coronary angiography.
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a blinded fashion as much as possible to avoid any potential bias 
from the analysts. However, sometimes this is practically impos-
sible (e.g., when comparing bioresorbable scaffolds with metallic 
stents or comparing stenting with balloon angioplasty).

ANGIOGRAPHIC STENOSIS VERSUS PHYSIOLOGICAL 
ASSESSMENT
It has been widely recognised that stenosis severity assessment on 
(quantitative) coronary angiography is not well correlated with the 
extent of flow limitation (i.e., ischaemia) of coronary stenoses. It 
has been shown that PCI guided by physiological assessment (in 
contrast to angiography-guided PCI) improved patient outcomes 
with respect to relief of anginal complaints and the necessity of 
(repeat) angiography22-25. Although in clinical trials QCA assess-
ment is very useful as a surrogate for neointimal growth over time 
(e.g., LLL and percent diameter stenosis), it should be used with 
caution for decision making regarding revascularisation. It is well 
known that the “oculostenotic reflex”, a term coined by Eric Topol 
to describe the irresistible temptation among some invasive cardio-
logists to perform angioplasty on any angiographically significant 
stenosis (i.e., diameter stenosis >50%)26, leads to an unjustifiably 
high rate of repeat revascularisations in clinical trials with angio-
graphic follow-up, underestimating the true clinical benefits27. It 
is therefore recommended to design trials in such a way that the 
angiographic follow-up is performed after the formal assessment 
of the primary clinical endpoints28. In addition, if a repeat angio-
graphy is performed before the clinical endpoints are assessed, 
a functional assessment is recommended to determine the clinical 
appropriateness of revascularisation in order to avoid unnecessary 
interventions29. 

CONVENTIONAL QCA NOT SUITABLE FOR BIFURCATION 
LESIONS
The coronary vascular tree is characterised by its fractal geometry, 
a scale-independent, recursive, self-similar (though not identical) 
branching pattern of a 3D vessel architecture30. The branching of 
the coronary tree at the bifurcations has been described accord-
ing to different scaling laws (e.g., Murray, Finet, etc.)31. The most 
accurate scaling law seems to be the one described by Huo and 
Kassab who have studied their “Huo-Kassab” (HK) model on 
casts of the coronary (micro-)vasculature taken from pigs and 
IVUS data from humans31-33. They found the following relation-
ship between the mother and two daughter vessel diameters (D):

These scaling laws have taught us that, per definition, daughter 
branches (i.e., the distal main branch or side branch) are always 
smaller than the mother vessel (i.e., the proximal main branch). 
QCA software was initially developed and validated in straight 
segments. However, when such conventional “single-vessel” QCA 
software is used in bifurcations, this will result in inaccurate meas-
urements34,35. As shown in a precision-manufactured bifurcation 

phantom, the use of “single-vessel” QCA in bifurcations will 
result in an underestimation of the interpolated reference vessel 
diameter in the proximal main branch (and thus underestimation 
of percentage diameter stenosis) and overestimation of the distal 
main branch and side branch (overestimating the percentage dia-
meter stenosis) because the software does not take into account the 
natural fractal geometry of the coronary tree36. Another limitation 
of the use of “single-vessel” QCA in bifurcations is the detection 
of a non-existing vessel contour at the ostium of the side branch. 
This is problematic for two reasons: the first is that in some cases 
these fake contours need to be redrawn, introducing bias. The sec-
ond reason is that in some cases it may even create a “pseudo 
stenosis”, a non-existing stenosis at the side branch ostium36,37. 
A third limitation of “single-vessel” QCA in bifurcations is the 
need for manual segmentation, since the conventional software 
does not automatically detect the three different bifurcation seg-
ments. For instance, the position where the analyst determines the 
beginning of the side branch may affect side branch stenosis meas-
urements significantly20,37. 

RECENT ADVANCES TO OVERCOME SOME OF THESE 
LIMITATIONS
In the last decade, the limitations of conventional, 2D, “single-
vessel” QCA have been addressed by further advances of QCA 
software, including the introduction of 3D QCA and dedicated 
bifurcation software.

DEDICATED BIFURCATION SOFTWARE
To overcome the limitations of the use of single-vessel QCA soft-
ware in bifurcations, dedicated bifurcation QCA software algo-
rithms have been developed (Figure 3)36-41. Although there are 
different software packages available from different companies, 
they share the same basic principles:
– The software automatically recognises the three vessel contours: 

1) from the proximal main branch to the distal main branch, 2) 
from the distal main branch, via the carina, to the side branch, 
and 3) from the proximal main branch to the side branch. As 
such, the software recognises the bifurcation as an anatomic 
entity without non-existing contours crossing the ostium of 
a distal branch (in contrast to the conventional software which 
only recognises two vessel contours).

– The interpolated reference diameter is reconstructed for each 
of the three bifurcation segments separately: 1) the proximal 
main branch, 2) the distal main branch, and 3) the side branch. 
Minimal lumen diameters and diameter stenoses are calculated 
for each segment separately. This prevents overestimation or 
underestimation of the diameter stenosis.
Currently, two of the available bifurcation software packages, 

CAAS bifurcation software (Pie Medical Imaging, Maastricht, the 
Netherlands) and QAngio XA bifurcation software (Medis medi-
cal imaging systems, Leiden, the Netherlands) have been vali-
dated against precision-manufactured bifurcation phantoms and 
compared with the single-vessel QCA software36. The bifurcation 
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QCA software algorithms proved to be highly accurate and pre-
cise. The two tested algorithms were comparable in accuracy and 
precision36. The European Bifurcation Club therefore recommends 
the use of bifurcation QCA software for angiographic analysis of 
bifurcation lesions17,34.

THREE-DIMENSIONAL QCA
3D QCA is another advance over the past decade, developed to 
overcome some of the shortcomings of 2D QCA. For each 3D 
reconstruction, two angiographic images are needed which are 
separated by a viewing angle of ≥30°. The main advantage of 3D 
QCA is its accuracy in length derivation by minimising possible 
vessel foreshortening commonly seen in 2D QCA42-45.

Another (theoretical) advantage of 3D QCA is that stenosis 
assessment is not influenced by the projection, which is especially 
important in eccentric lesions. In eccentric lesions with an oval-
shaped lumen, the minimal lumen diameter measured depends on 
the viewing angle (MLD will be smaller when the projection is 
perpendicular to the shortest axis of the oval-shaped lumen). 3D 
reconstructions could overcome this limitation. It is noteworthy 
that Yong et al demonstrated that 3D QCA measurements showed 
better predictability for functional significance as determined by 
invasive FFR than 2D QCA (in simple, non-bifurcated lesions)46. 
Thus 3D data provide more accurate information on the anatomi-
cal and functional severity of the stenosis47.

3D QCA software has also been developed specifically for bifur-
cation lesions. Another feature of 3D QCA is its ability to calculate 
the optimal viewing angle, defined as an orthogonal view of the 
lesion in such a way that foreshortening and overlap are minimised. 
This tool can aid the angiographer or interventionist in selecting the 
best projection48. This might be especially useful in bifurcations, 
where in some cases the evaluation of the three segments of the 
bifurcation is problematic. A limitation of 3D QCA might be its rel-
atively low feasibility, mainly due to the fact that two projections 
separated by 30 degrees are not always acquired43. In the SYNTAX 
trial for instance (in the left main lesion subgroup), 3D QCA was 
feasible in only 75.1%49. However, this could be improved by 
adherence to strict QCA guidelines for image acquisition34. Finally, 
3D QCA provides the opportunity for 3D modelling using compu-
tational fluid dynamics to simulate physiological assessment with-
out the need for pressure and/or flow wires50,51.

ANGIOGRAPHY-DERIVED FRACTIONAL FLOW RESERVE
Since the landmark paper of K. Lance Gould in 1978 describing 
the drop of pressure across a coronary stenosis, numerous attempts 
have been undertaken to improve the diagnostic ability of QCA to 
detect functionally significant lesions52,53. Beyond the traditional 
angiographic percent diameter stenosis assessment, other factors 
have been shown to impact on the functional component of a ste-
nosis, namely the entry and exit angles, length of the lesion, the 

Figure 3. Representative example of dedicated bifurcation QCA analysis. In the CAAS QCA bifurcation software (Pie Medical Imaging), the 
segment of analysis is indicated by one proximal and two distal delimiter points (white arrows, A). After automatic detection of the contours 
(B), the “point of bifurcation” (POB) is defined as the mid-point of the largest possible circle touching all three contours (C). The intersections 
of the circle with the centrelines (D) indicate the boundaries of the polygon of confluence (POC) (E). The diameter values are obtained 
differently inside the POC from those in straight segments outside the POC (F). Outside the POC, diameters are determined by the shortest 
distance between the vessel’s outer borders, as in the conventional straight-vessel QCA algorithm. Within the POC, however, another 
mathematical algorithm, the so-called “minimum freedom” approach, is used. Reprinted from Collet et al. EuroIntervention 2017 17.
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minimum lumen area and the reference vessel area. Using coro-
nary geometries derived from 3D QCA and applying fluid dynamic 
principles, a lesion-specific pressure drop can be calculated, thus 
simulating FFR. The angiography-derived FFR has been evalu-
ated using different approaches (Table 1, Figure 4)50,54-58. The most 
important difference among the published studies in the field of 
“angio FFR” is the method used for the pressure drop calculation. 

Some authors relied on the computational fluid dynamic (CFD) 
solving the Navier-Stokes equations to simulate the flow and 
pressure, whereas others used a simplified equation based on 
the Lance Gould formula, the so-called “rapid CFD”. The main 
advantage for the simplified approach is the reduced computation 
time. Consistently, these studies used invasive FFR as reference. 
Combining the published literature (n=501 vessels) by means of 

Figure 4. Technologies available for angiography-derived fractional flow reserve calculation. A) Simulated pressure distribution at 
hyperaemia. (Reproduced from Tu et al57). B) Pressure distribution in a colour-coded map for two different flow rates (Q), which resulted in 
a pressure gradient (ΔP) of 13.7 and 60.9 mmHg. (Reproduced from Papafaklis et al54). C) Virtual fractional flow reserve. (Reproduced from 
Morris et al56). D) FFR angio. (Reproduced from Trobs et al55). E) Angiogram-based FFR (CathWorks, Ra’anana, Israel) with the inclusion of 
bifurcation and the entire coronary tree. (Reproduced from Kornowski et al58). F) Quantitative flow ratio (QFR; Medis medical imaging 
systems, Leiden, the Netherlands). (Reproduced from Tu et al57).
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a meta-analysis, the sensitivity and specificity were 0.87 (95% CI: 
0.80 to 0.91) and 0.92 (95% CI: 0.89 to 0.94), respectively, with-
out significant heterogeneity among studies (I2 for sensitivity 49% 
and specificity 0%, n=6) (Figure 5). These results indicate that 
“angio FFR” may be a good tool for diagnosing ischaemia-pro-
ducing lesions in patients with non-complex CAD. However, fur-
ther studies are warranted to confirm this finding. 

Future developments in the field of coronary 
angiography
The calculation of FFR using angiographic images has the poten-
tial to revolutionise the field of QCA. The introduction of angio-
graphy-derived FFR into the cathlab might increase the use of 
QCA in clinical practice, providing an anatomical and physio-
logical assessment of coronary stenoses. Post-PCI measurements 
can be obtained from routine angiograms in order to evaluate 
the immediate effectiveness of PCI. Furthermore, the functional 
information can be adapted to the traditional LLL and restenosis 
concepts to provide the physiologic repercussions of these pheno-
mena. Future trials are warranted to address these questions.

Conclusions
For 40 years, coronary angiography has been developing continu-
ously in order to improve its diagnostic performance. In the cur-
rent era, the assessment of complex lesion morphology such as 
bifurcation lesions has been shown to be precise with dedicated 
software packages. Also, the accuracy of QCA has been improved 
by utilising 3D reconstruction, which has also enabled the simula-
tion of physiological parameters. These developments have made 
QCA a robust tool for the evaluation of coronary lesions with the 
potential to impact on clinical practice.

Authors’ perspective
Coronary angiography has evolved continuously over the past four 
decades. The refinements in QCA software and the advent of dedi-
cated bifurcation packages and 3D reconstruction have expanded 
the application of coronary angiography in the clinical and research 

Table 1. Summary of studies published on angiography-derived fractional flow reserve.

Study Design Year
N 

(vessels)
Mean  

(±SD) FFR
Technique

AUC  
(95% CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

PPV  
(95% CI)

NPV  
(95% CI)

LR+  
(95% CI)

LR–  
(95% CI)

Morris et al Prospective 2013   35 NA CFD NA 86 (45-97) 100 (60-100) 100 
(60-100) 97 (82-99) 10.0 (3.4-29.3) 0

Tu et al Prospective 2014   77 0.82±0.11 CFD 0.93 
(0.86-0.99) 78 (60-97) 93 (85-100) 82 (64-99) 91 (83-99) 12.5 (4.7-33.1) 0.2 (0.1-0.5)

Tu et al Prospective 2016   84 0.84±0.08 “Rapid CFD” 0.90 
(0.81-0.96) 78 (58-91) 89 (76-96) 80 (64-91) 88 (71-97) 8.4 (3.5-20.1) 0.3 (0.2-0.5)

Kornowski et al Prospective 2016 101 NA “Rapid CFD” NA 88* 98* NA NA NA NA

Papafaklis et al Retrospective 2014 139 0.84* “Rapid CFD” 0.92 (86-96) 90.4 (79-97) 86.2 (77-93) 80 (67-89) 94 (86-98) 6.6 (3.9-11.2) 0.11 (0.05-0.3)

Tröbs el al Retrospective 2015 100 0.84±0.11 CFD 0.93* 79* 94* 85* 92* 14.1 (5.3-37.1) 0.22 (0.1-0.5)

*Standard deviation not available. AUC: area under the curve; CFD: computational fluid dynamic; CI: confidence interval; FFR: fractional flow reserve; LR–: negative likelihood ratio; 
LR+: positive likelihood ratio; NA: not available; NPV: negative predictive value; PPV: positive predictive value

 Sensitivity (95% CI)
Tu et al. 0.78 (0.56-0.93)
Papaflakis et al. 0.90 (0.79-0.97)
Tröbs et al. 0.79 (0.60-0.92)
Morris et al. 1.00 (0.54-1.00)
Kornowsksi et al. 0.97 (0.83-1.00)
Tu et al. 0.78 (0.56-0.93)

Pooled sensitivity=0.87 (0.60 to 0.91)
Chi-square=9.80; df=5 (p=0.0811)
Inconsistency (I-square)=49.0%

 Specificity (95% CI)
Tu et al. 0.94 (0.85-0.98)
Papaflakis et al. 0.86 (0.77-0.93)
Tröbs et al. 0.94 (0.86-0.98)
Morris et al. 0.90 (0.73-0.98)
Kornowski et al. 0.94 (0.86-0.98)
Tu et al. 0.93 (0.82-0.98)

Pooled specificity=0.92 (0.89 to 0.94)
Chi-square=4.90; df=5 (p=0.4285)
Inconsistency (I-square)=0.0%

Symmetric SROC
AUC=0.9567
SE(AUC)=0.0120
Q*=0.8998
SE(Q*)=0.0170

0 0.2 0.4 0.6 0.8 1
Sensitivity

0 0.2 0.4 0.6 0.8 1
Specificity

Sensitivity SROC curve

0 0.2 0.4 0.6 0.8 1
1-Specificity
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Figure 5. Meta-analysis of the diagnostic accuracy of angiography-
derived fractional flow reserve methods. On the top panels, the 
pooled sensitivity and specificity are presented. In the lower panel, 
the pooled area under the curve for the accuracy of angiography-
derived fractional flow reserve to detect invasive fractional flow 
reserve <0.80. 
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setting. The novel concept of physiological assessment derived 
from angiography is expected to become a widespread tool to aid 
the interventionalist in the decision-making process.
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