# Proximal occlusion versus distal filter for cerebral protection during carotid stenting: updated meta-analysis of randomised and observational MRI studies

Salvatore Cassese<sup>1\*</sup>, MD; Gjin Ndrepepa<sup>1</sup>, MD; Lamin A. King<sup>1</sup>, MB BCh; Mateja Nerad<sup>3</sup>, MD; Heribert Schunkert<sup>1,2</sup>, MD; Adnan Kastrati<sup>1,2</sup>, MD; Ilka Ott<sup>1</sup>, MD; Massimiliano Fusaro<sup>1</sup>, MD

1. Deutsches Herzzentrum München, Technische Universität München, Munich, Germany; 2. DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany; 3. Klinische Abteilung für Kardiologie, Universität Graz, Graz, Austria

This paper also includes accompanying supplementary data published online at: http://www.pcronline.com/eurointervention/85th\_issue/44

## **KEYWORDS**

- carotid stenting
- distal filter
- embolisation
- magnetic
  resonance imaging
- meta-analysis
- proximal occlusion

## Abstract

**Aims:** Proximal occlusion (PO) and distal filter (DF) serve for cerebral embolic protection during carotid artery stenting (CAS). New cerebral lesions at diffusion-weighted magnetic resonance imaging (DW-MRI) represent a surrogate endpoint for embolisation, though their clinical impact is controversial. We performed a meta-analysis of randomised and observational DW-MRI studies comparing PO and DF during CAS.

**Methods and results:** We searched electronic scientific databases. The primary endpoint was the incidence of new cerebral lesions at DW-MRI; secondary endpoints were the incidence of new ipsilateral and new contralateral cerebral lesions at DW-MRI and death/cerebrovascular events (CVE). A total of 392 patients (seven studies) received CAS. At DW-MRI after 48 hours 178 patients (48.3%) presented new cerebral lesions. The use of PO versus DF reduced neither the risk of new cerebral lesions (OR [95% confidence interval] 0.65 [0.28-1.52], p=0.32) nor the risk of death/CVE (0.59 [0.22-1.60], p=0.30). Diabetes, baseline stenosis and symptoms significantly modified the risk estimates for new cerebral lesions.

**Conclusions:** In this meta-analysis, one half of patients receiving protected CAS developed new embolic cerebral lesions at DW-MRI, although the overwhelming majority were asymptomatic. Cerebral protection with PO versus DF neither reduced cerebral embolisation nor impacted on clinical outcomes.

\*Corresponding author: Deutsches Herzzentrum München, Technische Universität München, Lazarettstrasse 36, 80636 Munich, Germany. E-mail: cassese@dhm.mhn.de

In high-volume centres with documented low complication rates, patients with an indication for carotid revascularisation can be successfully treated with percutaneous carotid artery stenting (CAS) without the need for general anaesthesia or neck dissection as compared with carotid endarterectomy<sup>1,2</sup>. However, the cerebral migration of debris may occur at any stage during CAS and, although often asymptomatic, represents the major drawback of the procedure<sup>3,4</sup>. Diffusion-weighted magnetic resonance imaging (DW-MRI) is a valuable tool with high sensitivity to identify signs of new cerebral embolisation following CAS. Notwithstanding this, the clinical impact of these cerebral lesions is still controversial<sup>5</sup>.

Several devices have been developed to prevent cerebral embolisation during CAS, and current guideline-writing authorities suggest that embolic protection should be considered when the risk of vascular injury is low<sup>1,2</sup>. Cerebral protection during CAS is most commonly accomplished by using either proximal occlusion (PO) or distal filter (DF)<sup>6</sup>. In the case of PO (with or without extracorporeal arteriovenous shunting) the blood flow of the target carotid artery and the ipsilateral vascular system is reversed through the inflation of balloons placed in the common and external carotid arteries, without crossing the culprit lesion<sup>7</sup>. In the case of DF a mesh-based basket is advanced through the culprit lesion in the internal carotid artery and then opened distally to entrap particles generated during catheter-based manipulations.

To date, it remains uncertain whether PO or DF is the more effective in reducing the risk of cerebral embolisation during CAS, as investigations on this topic have given inconsistent results<sup>8-11</sup>.

This meta-analysis of DW-MRI studies compared PO versus DF for cerebral embolic protection during CAS.

## **Methods**

## SEARCH STRATEGY AND SELECTION CRITERIA

All details of search strategy and selection criteria are provided in the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) checklist **(Online Table 1)**, and this study was performed in compliance with the PRISMA statement<sup>12</sup>.

## DATA COLLECTION AND ASSESSMENT OF RISK OF BIAS

Two investigators (S. Cassese and G. Ndrepepa) independently assessed publications for eligibility at title and/or abstract level, with divergences resolved by a third investigator (M. Fusaro). Studies which met inclusion criteria were selected for further analysis. Freedom from bias was evaluated for each study by the same investigators, in accordance with The Cochrane Collaboration method<sup>13</sup>. We avoided formal quality score adjudications, which have previously been considered potentially misleading<sup>14</sup>.

#### **OUTCOME VARIABLES**

The primary outcome was the incidence of new cerebral lesions at DW-MRI after CAS. Secondary outcomes were the incidence of new ipsilateral and new contralateral cerebral lesions at DW-MRI after CAS, as well as the incidence of death/cerebrovascular events (CVE). Endpoints were evaluated as per protocol definitions.

Where further details were required, we attempted to obtain them from the study investigators directly.

## STATISTICAL ANALYSIS

Statistical analysis was performed using the Review Manager Version 5.1 (RevMan; The Cochrane Collaboration, Copenhagen, Denmark), and Stata 11.2 (StataCorp, College Station, TX, USA) software packages.

Distribution of patients and study characteristics were presented as median (interquartile range). Odds ratio (OR) and 95% confidence interval (95% CI) served as summary statistics for comparing PO versus DF devices, and risk estimates were displayed according to study design (randomised/observational). The Mantel-Haenszel random effects model (DerSimonian and Laird) was used to obtain pooled OR. For studies in which only one of the treatment groups had no events of interest, the risk estimates were approximated from 2×2 contingency tables after adding 0.5 to each cell<sup>15</sup>. The Breslow-Day  $\gamma^2$ test and the I<sup>2</sup> statistic were used to test heterogeneity across the studies<sup>13</sup>, whilst the restricted maximum likelihood method (Tau<sup>2</sup>) tested between-study heterogeneity. Visual estimation of funnel plot as well as statistical tests assessed possible publication bias for the primary outcome, as previously published<sup>16</sup>. An influence analysis was performed for the primary outcome. A random effects sensitivity analysis evaluated the extent to which several covariates might have influenced the risk estimates for endpoints showing significant heterogeneity. Covariates included: the size of the study (under/above median number of patients enrolled), the enrolment in a centre experienced in CAS procedures (>50/year)<sup>1</sup>, the type of PO (with/without arteriovenous shunt), the type of DF (concentric/eccentric), the stent design (closed/open cell), the sensitivity of MRI (1.5- or 3-Tesla MRI scanner), the timing of MRI (<24 or >24 hours after CAS), the age (under/ above median value), the average of males (under/above median value), or diabetics (under/above median value), the grade of baseline stenosis (under/above median value) and the average of symptomatic patients (under/above median value). Finally, a random effects metaregression analysis assessed the relation between new cerebral lesions (expressed as the proportion of patients with new cerebral lesions at DW-MRI after CAS) and the risk estimates for death/CVE.

## Results

## **ELIGIBLE STUDIES**

The process of study selection is summarised in **Figure 1**. Seven studies – six randomised<sup>4,8-11,17</sup>, one observational<sup>18</sup>, all full-length manuscripts – were selected for inclusion in the meta-analysis. A total of 392 patients undergoing protected CAS (193 with PO and 199 with DF) were studied.

The main characteristics of the included studies, the devices used to accomplish cerebral protection and the types of stent implanted are described in detail **(Online Table 2)**. All studies were single-centre except one<sup>11</sup>, and all studies reported the institutional level of experience (cases of CAS/year) prior to starting the enrolment. Patients with evidence of  $\geq$ 50% to  $\geq$ 70% symptomatic stenosis or evidence of  $\geq$ 60% to  $\geq$ 80% asymptomatic stenosis of the internal carotid artery



Figure 1. PRISMA flow chart for the study selection process. PRISMA: Preferred Reporting Items for Systematic reviews and Meta-Analyses

were assigned to transfemoral protected CAS with PO versus DF. Patients with an occluded target carotid artery, recent stroke, contraindication to antiplatelet and/or anticoagulant therapy, common contraindications to MRI (i.e., pacemaker, claustrophobia, etc.) and other possible sources of cerebral embolism were excluded. In one study<sup>18</sup>, several different distal filters, as well as several different stent types, were used: for the purpose of the present analysis we assumed that the most used were representative of the entire cohort. In one trial, for two patients (0.7% of all patients included in the meta-analysis) carotid intervention consisted of balloon angioplasty only<sup>8</sup>. Overall, few cases crossed over due to inability to advance the device assigned<sup>4</sup>.

The median number of patients included in each study was 53 (44-62), and the clinical characteristics matched those of patients suffering from cerebrovascular disease (**Table 1**). The median age was 68.8 years (67.7-70.1) with a high frequency of males (71% [63-79]), diabetics (29% [25-40]) and high-grade baseline stenosis (85.0% [83.6-86.2]). In detail, patients receiving cerebral protection by means of PO had a baseline stenosis of 86.4% (84.4-88.0),

whilst those receiving cerebral protection by means of DF had a baseline stenosis of 82.8% (82.0-86.1).

An overview of the definitions of the endpoints in the studies is reported in **Online Table 3**. In all but one study<sup>4</sup>, the primary endpoint was the incidence of new cerebral lesions at DW-MRI after CAS. One study<sup>4</sup> primarily evaluated the rate of embolic signals at transcranial Doppler echography during protected CAS. Only one study tested the change in the neurocognitive function six months after CAS<sup>11</sup>. All patients received protected CAS in addition to standard medical therapy. Two studies<sup>10,18</sup> administered a 300 mg clopidogrel loading dose before CAS, and dual antiplatelet therapy was prescribed for 30 days after index procedure in all studies but one<sup>10</sup>. The risk of bias among studies is reported in **Online Table 4**.

#### IMAGING AND CLINICAL OUTCOMES

A total of 368 patients (93.8%) received DW-MRI after CAS at 48 hours (24-72). New cerebral lesions at DW-MRI after CAS were observed in 178 patients (48.3%). The use of PO versus DF did not

| Study                                               | Patients, n | Age, yrs | Males, % | Diabetes, % | Stenosis, % | Symptomatic patients, % |  |
|-----------------------------------------------------|-------------|----------|----------|-------------|-------------|-------------------------|--|
| Akkaya et al <sup>11</sup>                          | 100         | 70.1     | 28       | 29          | 86.2        | 30                      |  |
| Bijuklic et al <sup>9</sup>                         | 62          | 71.7     | 77       | 29          | 89.0        | 40                      |  |
| Cano et al <sup>17</sup>                            | 60          | 67.7     | 67       | 40          | 83.6        | 69                      |  |
| de Castro-Afonso et al <sup>10</sup>                | 44          | 69.0     | 63       | 40          | 66.3        | 82                      |  |
| EI-Koussy et al <sup>8</sup>                        | 33          | 68.0     | 71       | N/R         | N/R         | 56                      |  |
| Montorsi et al <sup>4</sup>                         | 53          | 68.8     | 79       | 25          | 85.0        | 11                      |  |
| Flach et al <sup>18</sup>                           | 44          | 66.0     | 85       | 12          | N/R         | 100                     |  |
| Overall mean values are reported. N/R: not reported |             |          |          |             |             |                         |  |

Table 1. Main characteristics of patients enrolled among studies included in the meta-analysis.

reduce the risk of new cerebral lesions although the heterogeneity was significant (0.65 [0.28-1.52], p=0.32; I<sup>2</sup>=68%, p for heterogeneity -  $p_{het}$ =0.004) (Figure 2A).

New ipsilateral cerebral lesions at DW-MRI after CAS were observed in 161 patients (43.7%). The use of PO versus DF did not reduce the risk of new ipsilateral cerebral lesions although the heterogeneity was significant (0.62 [0.26-1.47], p=0.28; I<sup>2</sup>=65%,  $p_{her}$ =0.009) (Figure 2B).

New contralateral cerebral lesions at DW-MRI after CAS were observed in 44 patients (13.2%; data available for 333 [90.4%] patients, six studies<sup>8-11,17,18</sup>). The use of PO versus DF did not reduce the risk of new contralateral cerebral lesions without heterogeneity between studies (0.56 [0.28-1.13], p=0.11; I<sup>2</sup>=0%,  $p_{het}$ =0.11) (**Figure 2C**).

Clinical follow-up was to 135 days (30-360). Death/CVE occurred in 16 patients (4.1%). The use of PO versus DF did not reduce the risk of death/CVE without significant heterogeneity between studies (0.60 [0.22-1.63], p=0.32;  $I^2=0\%$ ,  $p_{he}=0.98$ ) (Figure 2D).

Approximation from  $2\times 2$  contingency tables may have a major impact on the results when the outcomes are rare. For this reason, the non-approximated risk of death/CVE was calculated using the exact conditional likelihood method according to Martin and Austin<sup>19</sup>. The use of PO versus DF did not reduce the non-approximated risk of death/CVE without significant heterogeneity between studies (0.55 [0.20-1.50], p=0.25; I<sup>2</sup>=0%, p<sub>her</sub>=0.88).

## SMALL STUDY EFFECTS, INFLUENCE AND SENSITIVITY ANALYSES

Funnel plot distribution of primary outcome was derived from the standard error of the logarithm OR plotted against the OR of new cerebral lesions (**Online Figure 1**). Of note, the absence of bias due to small study effects was confirmed both visually and mathematically. Additionally, the influence analysis demonstrated that no single study significantly altered the summary OR for new cerebral lesions (data not shown).

To investigate the sources of the observed heterogeneity, two sensitivity analyses were conducted **(Table 2)**. There was a significant modification of treatment effect for new cerebral lesions by average of diabetics (p for interaction  $-p_{int}=0.02$ ), high-grade baseline stenosis ( $p_{int}=0.01$ ) or presence of symptoms ( $p_{int}=0.003$ ). There was significant modification of treatment effect for new ipsilateral cerebral lesions by average of diabetics ( $p_{int}=0.009$ ), high-grade baseline stenosis ( $p_{int}=0.04$ ) or presence of symptoms ( $p_{int}=0.01$ ). The study size, the centre experience in CAS procedures, the type of PO or DF, the stent design, the sensitivity or timing of DW-MRI after CAS, the age of the patients and the average of males did not modify the risk estimates.

The meta-regression analysis showed no significant relationship between the presence of new cerebral lesions at DW-MRI after CAS and the risk of death/CVE (**Online Figure 2**).

## Discussion

This meta-analysis investigated whether PO versus DF reduces the risk of cerebral embolisation associated with CAS. The main findings can be summarised as follows: (i) at DW-MRI 48 hours after protected CAS one half of patients present new embolic cerebral lesions, though the large majority of events are asymptomatic; (ii) the use of PO versus DF does not influence the risk of new cerebral lesions after CAS with significant modification of treatment effect by diabetes, baseline stenosis and symptoms; (iii) the use of PO versus DF during protected CAS does not impact on the risk of death/CVE.

Patients suffering from atherosclerotic disease of the carotid arteries represent an important challenge due to the high risk of disability and comorbidity<sup>20</sup>. In recent years, CAS has emerged as a less invasive revascularisation option with similar efficacy compared to surgery in centres performing a large number of procedures<sup>1</sup>. Although remaining largely asymptomatic, cerebral embolisation associated with CAS represents a matter of concern<sup>21</sup>. Given the paucity of clinical events after contemporary CAS<sup>22</sup>, imaging techniques are useful in studies assessing treatment efficacy and safety. In this regard, DW-MRI has shown itself to be a sensitive and reliable tool to identify signs of new cerebral embolisation following CAS<sup>23</sup>.

Despite the lack of dedicated, large-scale, sufficiently powered, randomised trials favouring protected CAS, guideline-writing authorities suggest that embolic protection should be considered for patients undergoing endovascular carotid revascularisation (Class IIb recommendation)<sup>1,2</sup>. Several embolic protection devices have been developed to prevent the cerebral migration of debris associated with catheter manipulations during CAS<sup>6</sup>. Among embolic protection devices, PO and DF are the most commonly used in contemporary practice. Whether the use of PO as compared with DF reduces the risk of cerebral embolisation during CAS is still debated. Indeed, previous small-sized studies found that PO versus DF was associated with a lower<sup>4,9,11,17</sup>, similar<sup>8,18</sup> or higher<sup>10</sup> incidence of new cerebral lesions at DW-MRI after CAS.

In the present analysis, we pooled the study-level data of seven studies investigating the efficacy of PO versus DF in reducing the risk of new cerebral lesions associated with CAS. DW-MRI served for the assessment of imaging outcomes. Firstly, this meta-analysis shows that half of patients have new signs of cerebral embolisation at DW-MRI performed within 48 hours after protected CAS. The large majority of these new signs are ipsilateral, do not lead to clinical sequelae and have no significant relationship with the risk of adverse outcomes. These results merit careful discussion.

DW-MRI allows for high sensitivity comparison of embolic protection during CAS. However, the clinical relevance of new asymptomatic cerebral lesions at DW-MRI after CAS represents a matter of ongoing controversy<sup>23</sup>. The present meta-analysis did not find a relationship between the incidence of new cerebral lesions after protected CAS and the risk of death/CVE. Similarly, a large retrospective registry<sup>5</sup> and a recent randomised trial<sup>11</sup> did not support the association of new cerebral lesions with major adverse events at follow-up. Notwithstanding this, the possible negative impact of new asymptomatic cerebral lesions at DW-MRI after CAS on cognitive function remains open to question.

Preliminary studies with routine neuropsychological tests suggested that new cerebral lesions at DW-MRI after CAS may impact negatively on cognitive function<sup>24,25</sup>, due to a microemboli-induced

| A. New cerebral lesions         |                                  |          |                     |        |                     |                     |
|---------------------------------|----------------------------------|----------|---------------------|--------|---------------------|---------------------|
|                                 | Proximal occlusion               | Dista    | l filter            |        | Odds ratio          | Odds ratio          |
| Study or subgroup               | Events Total                     | Events   | Total               | Weight | M-H, Random, 95% Cl | M-H, Random, 95% Cl |
| 1.1.1 Randomised                |                                  |          |                     |        |                     |                     |
| Akkaya et al.                   | 19 48                            | 30       | 46                  | 17.8%  | 0.35 [0.15, 0.81]   |                     |
| Bijuklic et al.                 | 14 31                            | 27       | 31                  | 14.6%  | 0.12 [0.03, 0.43]   |                     |
| Cano et al.                     | 20 30                            | 19       | 30                  | 16.2%  | 1.16 [0.40, 3.35]   |                     |
| de Castro-Afonso et al.         | 10 21                            | 3        | 19                  | 12.9%  | 4.85 [1.08, 21.76]  |                     |
| El-Koussy et al.                | 7 25                             | 6        | 19                  | 14.3%  | 0.84 [0.23, 3.10]   |                     |
| Montorsi et al.                 | 2 14                             | 9        | 21                  | 11.4%  | 0.22 [0.04, 1.25]   |                     |
| Subtotal (95% CI)               | 169                              |          | 166                 | 87.3%  | 0.59 [0.23, 1.53]   |                     |
| Total events                    | 72                               | 94       |                     |        |                     | -                   |
| Heterogeneity: Tau2=0.99; Ch    | ni²=17.99, df=5 (P=              | =0.003); | 12=72%              |        |                     |                     |
| Test for overall effect: Z=1.09 | 9 (P=0.28)                       |          |                     |        |                     |                     |
| 1.1.2 Observational             |                                  |          |                     |        |                     |                     |
| Flach et al.                    | 4 10                             | 8        | 23                  | 12.7%  | 1.25 [0.27, 5.77]   |                     |
| Subtotal (95% CI)               | 10                               |          | 23                  | 12.7%  | 1.25 [0.27, 5.77]   |                     |
| Total events                    | 4                                | 8        |                     |        |                     |                     |
| Heterogeneity: Not applicable   | 3                                |          |                     |        |                     |                     |
| Test for overall effect: Z=0.29 | 9 (P=0.77)                       |          |                     |        |                     |                     |
| Total (95% CI)                  | 179                              |          | 189                 | 100.0% | 0.65 [0.28, 1.52]   |                     |
| Total events                    | 76                               | 102      |                     |        |                     | -                   |
| Heterogeneity: Tau2=0.87; Ch    | ni <sup>2</sup> =19.00, df=6 (P= | =0.004); | l <sup>2</sup> =68% |        |                     |                     |
| Test for overall effect: Z=1.00 | ) (P=0.32)                       |          |                     |        |                     |                     |
| Test for subgroup differences   | : Chi2=0.67, df=1 (              | P=0.41), | I2=0%               |        | _                   |                     |
|                                 |                                  |          |                     |        | 0.01                | 0.1 1 10 10         |

| B. New ipsilateral cerebral              | esions                    |         |          |                     |        |                    |                           |                      |     |
|------------------------------------------|---------------------------|---------|----------|---------------------|--------|--------------------|---------------------------|----------------------|-----|
|                                          | Proximal oc               | clusion | Dista    | l filter            |        | Odds ratio         | Odds                      | ratio                |     |
| Study or subgroup                        | Events                    | Total   | Events   | Total               | Weight | M-H, Random, 95% C | I M-H, Rando              | om, 95% Cl           |     |
| 1.2.1 Randomised                         |                           |         |          |                     |        |                    |                           |                      |     |
| Akkaya et al.                            | 17                        | 48      | 27       | 46                  | 19.5%  | 0.39 [0.17, 0.89]  | _ <b>_</b> _              |                      |     |
| Bijuklic et al.                          | 14                        | 31      | 27       | 31                  | 15.8%  | 0.12 [0.03, 0.43]  |                           |                      |     |
| Cano et al.                              | 19                        | 30      | 17       | 30                  | 17.8%  | 1.32 [0.47, 3.72]  |                           |                      |     |
| de Castro-Afonso et al.                  | 7                         | 21      | 0        | 19                  | 6.4%   | 20.17 [1.06, 382.4 | [5]                       |                      |     |
| El-Koussy et al.                         | 5                         | 25      | 5        | 19                  | 14.6%  | 0.70 [0.17, 2.88]  |                           |                      |     |
| Montorsi et al.                          | 2                         | 14      | 9        | 21                  | 12.3%  | 0.22 [0.04, 1.25]  |                           | -                    |     |
| Subtotal (95% CI)                        |                           | 169     |          | 166                 | 86.3%  | 0.56 [0.21, 1.49]  | -                         | -                    |     |
| Total events                             | 64                        |         | 85       |                     |        |                    |                           |                      |     |
| Heterogeneity: Tau <sup>2</sup> =0.95; C | hi²=15.93, d              | f=5 (P= | 0.007);  | l <sup>2</sup> =69% | ,      |                    |                           |                      |     |
| Test for overall effect: Z=1.1           | 7 (P=0.24)                |         |          |                     |        |                    |                           |                      |     |
|                                          |                           |         |          |                     |        |                    |                           |                      |     |
| 1.2.2 Observational                      |                           |         |          |                     |        |                    |                           |                      |     |
| Flach et al.                             | 4                         | 10      | 8        | 23                  | 13.7%  | 1.25 [0.27, 5.77]  |                           |                      |     |
| Subtotal (95% CI)                        |                           | 10      |          | 23                  | 13.7%  | 1.25 [0.27, 5.77]  |                           |                      |     |
| Total events                             | 4                         |         | 8        |                     |        |                    |                           |                      |     |
| Heterogeneity: Not applicabl             | e                         |         |          |                     |        |                    |                           |                      |     |
| Test for overall effect: Z=0.2           | 9 (P=0.77)                |         |          |                     |        |                    |                           |                      |     |
|                                          |                           |         |          |                     |        |                    |                           |                      |     |
| Total (95% CI)                           |                           | 179     |          | 189                 | 100.0% | 0.62 [0.26, 1.47]  |                           | -                    |     |
| Total events                             | 68                        |         | 93       |                     |        |                    |                           |                      |     |
| Heterogeneity: Tau <sup>2</sup> =0.83; C | hi²=17.11, d              | f=6 (P= | 0.009);  | l <sup>2</sup> =65% | ,      |                    |                           |                      |     |
| Test for overall effect: Z=1.0           | 9 (P=0.28)                |         |          |                     |        |                    |                           |                      |     |
| Test for subgroup differences            | : Chi <sup>2</sup> =0.76, | df=1 (F | P=0.38), | I <sup>2</sup> =0%  |        |                    |                           |                      |     |
|                                          |                           |         |          |                     |        | 0.                 | 01 0.1 1                  | 10                   | 100 |
|                                          |                           |         |          |                     |        |                    | Proximal occlusion better | Distal filter better |     |

| C. New contralateral cerebr               | al lesions                      |                         |          |        |                     |                                               |
|-------------------------------------------|---------------------------------|-------------------------|----------|--------|---------------------|-----------------------------------------------|
|                                           | Proximal occlusion              | Dista                   | l filter |        | Odds ratio          | Odds ratio                                    |
| Study or subgroup                         | Events Total                    | Events                  | Total    | Weight | M-H, Random, 95% Cl | M-H, Random, 95% Cl                           |
| 1.3.1 Randomised                          |                                 |                         |          |        |                     |                                               |
| Akkaya et al.                             | 2 48                            | 3                       | 46       | 14.8%  | 0.62 [0.10, 3.91]   |                                               |
| Bijuklic et al.                           | 2 31                            | 9                       | 31       | 18.9%  | 0.17 [0.03, 0.86]   |                                               |
| Cano et al.                               | 8 30                            | 11                      | 30       | 41.5%  | 0.63 [0.21, 1.88]   |                                               |
| de Castro-Afonso et al.                   | 3 21                            | 3                       | 19       | 16.6%  | 0.89 [0.16, 5.05]   |                                               |
| EI-Koussy et al.                          | 5 25                            | 1                       | 19       | 8.2%   | 1.57 [0.13, 18.66]  |                                               |
| Subtotal (95% CI)                         | 155                             |                         | 145      | 100.0% | 0.56 [0.28, 1.13]   |                                               |
| Total events                              | 17                              | 27                      |          |        |                     | -                                             |
| Heterogeneity: Tau <sup>2</sup> =0.00; Cl | hi <sup>2</sup> =3.09, df=4 (P= | 0.54); I <sup>2</sup> = | 0%       |        |                     |                                               |
| Test for overall effect: Z=1.12           | 7 (P=0.24)                      |                         |          |        |                     |                                               |
|                                           |                                 |                         |          |        |                     |                                               |
| 1.3.2 Observational                       |                                 |                         |          |        |                     |                                               |
| Flach et al.                              | 0 10                            | 0                       | 23       |        | Not estimable       |                                               |
| Subtotal (95% CI)                         | 10                              |                         | 23       |        | Not estimable       |                                               |
| Total events                              | 0                               | 0                       |          |        |                     |                                               |
| Heterogeneity: Not applicable             | e                               |                         |          |        |                     |                                               |
| Test for overall effect: Not ap           | plicable                        |                         |          |        |                     |                                               |
|                                           |                                 |                         |          |        |                     |                                               |
| Total (95% CI)                            | 165                             |                         | 168      | 100.0% | 0.56 [0.28, 1.13]   | -                                             |
| Total events                              | 17                              | 27                      |          |        |                     |                                               |
| Heterogeneity: Tau <sup>2</sup> =0.00; Cl | hi <sup>2</sup> =3.09, df=4 (P= | 0.54); I <sup>2</sup> = | 0%       |        |                     |                                               |
| Test for overall effect: Z=1.6            | 1 (P=0.11)                      |                         |          |        |                     |                                               |
| Test for subgroup differences             | : Not applicable                |                         |          |        |                     |                                               |
|                                           |                                 |                         |          |        | 0.01                | 0.1 1 10 10                                   |
|                                           |                                 |                         |          |        | D                   | revimal exclusion better Distal filter better |

**Figure 2.** *Risk estimates of primary and secondary outcomes for proximal occlusion versus distal filter during carotid artery stenting. Plot of odds ratio for primary (A) and secondary outcomes (B-D) associated with proximal occlusion versus distal filter. The diamond indicates the point estimate and the left and the right ends, the 95% confidence interval (CI). The test for subgroup differences describes the interaction between study design (randomised/observational) and the outcomes (p-value <0.05 indicates significance). CVE: cerebrovascular events; <i>M-H: Mantel-Haenszel* 

| D. D H. (0)//C                            |              |          |                        |       |        |                   |                           |                      |     |
|-------------------------------------------|--------------|----------|------------------------|-------|--------|-------------------|---------------------------|----------------------|-----|
| D. Death/GVE                              |              |          |                        |       |        |                   |                           |                      |     |
|                                           | Proximal o   | cclusion | on Distal filter       |       |        | Odds ratio        | Odd                       | s ratio              |     |
| Study or subgroup                         | Events       | Total    | Events                 | Total | Weight | M-H, Random, 95%  | CI M-H, Rand              | lom, 95% Cl          |     |
| 1.4.1 Randomised                          |              |          |                        |       |        |                   |                           |                      |     |
| Akkaya et al.                             | 2            | 50       | 3                      | 50    | 29.3%  | 0.65 [0.10, 4.09  | 9]                        | <b></b>              |     |
| Bijuklic et al.                           | 0            | 31       | 1                      | 31    | 9.4%   | 0.32 [0.01, 8.23  | B]                        |                      |     |
| Cano et al.                               | 0            | 30       | 1                      | 30    | 9.4%   | 0.32 [0.01, 8.24  | 1]                        | <u> </u>             |     |
| de Castro-Afonso et al.                   | 1            | 21       | 1                      | 19    | 12.2%  | 0.90 [0.05, 15.4  | 17] ———                   | •                    |     |
| EI-Koussy et al.                          | 1            | 25       | 2                      | 19    | 16.0%  | 0.35 [0.03, 4.23  | 3]                        | +                    |     |
| Montorsi et al.                           | 2            | 26       | 2                      | 27    | 23.7%  | 1.04 [0.14, 8.00  | )]                        |                      |     |
| Subtotal (95% CI)                         |              | 183      |                        | 176   | 100.0% | 0.60 [0.22, 1.63] |                           |                      |     |
| Total events                              | 6            |          | 10                     |       |        |                   |                           |                      |     |
| Heterogeneity: Tau <sup>2</sup> =0.00; Ch | ni²=0.82, df | =5 (P=0  | .98); I2=              | 0%    |        |                   |                           |                      |     |
| Test for overall effect: Z=1.00           | ) (P=0.32)   |          |                        |       |        |                   |                           |                      |     |
|                                           |              |          |                        |       |        |                   |                           |                      |     |
| 1.4.2 Observational                       |              |          |                        |       |        |                   |                           |                      |     |
| Flach et al.                              | 0            | 10       | 0                      | 23    |        | Not estimable     |                           |                      |     |
| Subtotal (95% CI)                         |              | 10       |                        | 23    |        | Not estimable     |                           |                      |     |
| Total events                              | 0            |          | 0                      |       |        |                   |                           |                      |     |
| Heterogeneity: Not applicable             | е            |          |                        |       |        |                   |                           |                      |     |
| Test for overall effect: Not ap           | plicable     |          |                        |       |        |                   |                           |                      |     |
|                                           |              |          |                        |       |        |                   |                           |                      |     |
| Total (95% CI)                            |              | 193      |                        | 199   | 100.0% | 0.60 [0.22, 1.63] |                           |                      |     |
| Total events                              | 6            |          | 10                     |       |        |                   |                           |                      |     |
| Heterogeneity: Tau <sup>2</sup> =0.00; Ch | ni²=0.82, df | =5 (P=0  | .98); l <sup>2</sup> = | 0%    |        |                   |                           |                      |     |
| Test for overall effect: Z=1.00           | D (P=0.32)   |          |                        |       |        |                   |                           |                      |     |
| Test for subgroup differences             | : Not applic | able     |                        |       |        |                   | · · · ·                   |                      |     |
|                                           |              |          |                        |       |        |                   | 0.01 0.1                  | 1 10                 | 100 |
|                                           |              |          |                        |       |        |                   | Proximal occlusion better | Distal filter better |     |

**Figure 2 (cont'd).** *Risk estimates of primary and secondary outcomes for proximal occlusion versus distal filter during carotid artery stenting. Plot of odds ratio for primary (A) and secondary outcomes (B-D) associated with proximal occlusion versus distal filter. The diamond indicates the point estimate and the left and the right ends, the 95% confidence interval (CI). The test for subgroup differences describes the interaction between study design (randomised/observational) and the outcomes (p-value <0.05 indicates significance). CVE: cerebrovascular events; M-H: Mantel-Haenszel* 

cerebral deterioration similar to that observed in some patients after cardiac surgery<sup>26</sup>. On the contrary, the randomised trial of Akkaya et al, which planned a routine six-month neuropsychological examination after protected CAS, failed to demonstrate a significant neurocognitive decline in patients with as compared to those without new cerebral lesions at DW-MRI<sup>11</sup>. Thus, the impact on neurocognitive function of new cerebral lesions at DW-MRI after CAS warrants further investigation.

Secondly, the present study suggests that the use of PO versus DF during protected CAS does not reduce the risk of cerebral embolisation observed at DW-MRI, neither ipsilateral nor contralateral. New ipsilateral cerebral lesions are considered a surrogate marker of device efficacy, whilst new contralateral cerebral lesions are considered a surrogate marker of device or procedure complexity, since they are mainly due to aortic arch instrumentation<sup>27</sup>. Although the risk of new cerebral lesions does not differ with PO versus DF, the present study points to a significant modification of treatment effect according to diabetes, baseline stenosis or symptoms. In the first randomised trial comparing PO versus DF for protected CAS, Montorsi et al<sup>4</sup> divided the CAS procedure into several phases and measured the incidence of microembolic signals at transcranial Doppler echography in each phase. The highest incidence of microembolic signals associated with PO was registered during deflation of the proximal balloon, possibly due to suboptimal aspiration or wash-out of debris prolapsed through the stent struts once blood flow was restored. The highest incidence of microembolic signals associated with DF was registered while crossing the target lesion, possibly due to device/plaque attrition. Taking together previous observations and the present findings, it can be argued that the higher the grade of baseline stenosis, the greater the efficacy of PO versus DF. Indeed, PO ensures cerebral protection during CAS without crossing the culprit lesion, thus avoiding the embolisation of debris due to the mechanical disruption of the plaque. In addition, the blood-flow inversion impedes the continuous flushing of plaque components into the brain. However, the advantages associated with PO are less relevant in diabetic or symptomatic patients due to intrinsic lesion features<sup>28</sup> that may lead to acute and subacute prolapse of plaque components even after stent implantation once cerebral protection is completely removed.

Thirdly, the present study shows that the use of PO versus DF during CAS was not associated with a lower risk of death/CVE. Continuous device and therapy iteration have transformed contemporary CAS into a highly safe and efficacious treatment strategy, through a drastic reduction of adverse events<sup>22</sup>. For this reason, comparative studies of contemporary CAS with PO versus DF for cerebral protection would require very large sample sizes to be adequately powered for rare outcomes. In the absence of such studies, the clinical results of this meta-analysis are reassuring and in line with those observed in the era of protected CAS<sup>21,22</sup>. However, the small sample size of this meta-analysis cannot definitively rule out a different clinical efficacy between PO and DF. Interestingly, in a recent meta-analysis of DW-MRI studies<sup>29</sup>, CAS with PO versus DF led to fewer new cerebral lesions/patient. However, the presence of significant statistical heterogeneity, i.e., the inclusion of studies comparing transcervical CAS with PO versus transfemoral CAS with DF (with a different inherent risk of cerebral embolisation), the lack of investigation of the observed heterogeneity and the absence of analyses addressing the clinical impact of imaging findings, reinforces the value of the current analysis.

#### Table 2. Sensitivity analysis for endpoints with significant heterogeneity.

| Variable                        | Subgroup          | Study, n | New cerebral lesions<br>OR [95% Cl] | <b>p</b> <sub>int</sub> | New ipsilateral cerebral<br>lesions OR [95% Cl] | <b>p</b> <sub>int</sub> |
|---------------------------------|-------------------|----------|-------------------------------------|-------------------------|-------------------------------------------------|-------------------------|
| Study size, patients            | ≤53               | 4        | 1.07 [0.33-3.45]                    | 0.21                    | 1.01 [0.25-4.13]                                | 0.34                    |
|                                 | >53               | 3        | 0.38 [0.12-1.21]                    |                         | 0.41 [0.12-1.40]                                |                         |
| Experienced centre              | Yes               | 5        | 0.55 [0.37-2.68]                    | 0.44                    | 0.55 [0.17-1.80]                                | 0.53                    |
|                                 | No                | 2        | 0.99 [0.37-2.68]                    |                         | 0.91 [0.32-2.58]                                |                         |
| PO type                         | Without AV shunt  | 5        | 0.41 [0.19-1.92]                    | 0.22                    | 0.42 [0.18-0.96]                                | 0.13                    |
|                                 | With AV shunt     | 2        | 2.48 [0.66-9.37]                    |                         | 3.84 [0.23-63.79]                               |                         |
| DF type                         | Concentric        | 3        | 0.38 [0.12-1.21]                    | 0.21                    | 0.41 [0.12-1.40]                                | 0.34                    |
|                                 | Eccentric         | 4        | 1.07 [0.33-3.45]                    |                         | 1.01 [0.25-4.13]                                |                         |
| Stent design                    | Closed cell       | 2        | 1.07 [0.05-22.02]                   | >0.99                   | 1.82 [0.02-182.06]                              | 0.83                    |
|                                 | Open cell         | 3        | 1.07 [0.52-2.20]                    |                         | 1.10 [0.53-2.29]                                |                         |
| Sensitivity of imaging          | 1.5-Tesla scanner | 5        | 0.39 [0.18-1.84]                    | 0.36                    | 0.38 [0.18-0.80]                                | 0.11                    |
|                                 | 3-Tesla scanner   | 2        | 2.14 [0.53-8.59]                    |                         | 3.70 [0.25-55.52]                               |                         |
| Time of imaging, hours          | ≤24               | 2        | 0.75 [0.02-27.79]                   | 0.91                    | 1.34 [0.01-297.43]                              | 0.78                    |
|                                 | >24               | 5        | 0.62 [0.33-1.17]                    |                         | 0.64 [0.34-1.22]                                |                         |
| Median age, years               | ≤68.8             | 4        | 0.84 [0.43-1.65]                    | 0.68                    | 0.84 [0.41-1.73]                                | 0.74                    |
|                                 | >68.8             | 3        | 0.56 [0.09-3.42]                    |                         | 0.60 [0.09-4.17]                                |                         |
| Average of males, %             | ≤71               | 4        | 1.01 [0.36-2.85]                    | 0.18                    | 1.00 [0.33-3.05]                                | 0.19                    |
|                                 | >71               | 3        | 0.31 [0.08-1.30]                    |                         | 0.31 [0.08-1.30]                                |                         |
| Average of diabetics, %         | ≤29               | 4        | 0.32 [0.13-0.76]                    | 0.02                    | 0.33 [0.14-0.80]                                | 0.009                   |
|                                 | >29               | 2        | 2.14 [0.53-8.59]                    |                         | 3.70 [0.25-55.52]                               |                         |
| Average of baseline stenosis, % | ≤85               | 3        | 2.13 [0.25-5.22]                    | 0.01                    | 2.33 [0.19-9.46]                                | 0.04                    |
|                                 | >85               | 2        | 0.23 [0.08-0.63]                    |                         | 0.24 [0.08-0.73]                                |                         |
| Average of symptomatic          | ≤56               | 4        | 0.31 [0.15-0.66]                    | 0.003                   | 0.31 [0.15-0.61]                                | 0.01                    |
| patients, %                     | >56               | 3        | 1.75 [0.74-4.15]                    |                         | 1.89 [0.57-6.29]                                |                         |

Odds ratios (OR) (95% confidence intervals [CI]) are used as summary statistics; *p*-values for interaction ( $p_{int}$ ) between treatment effects (PO versus DF) and subgroups of interest are derived using the Mantel-Haenszel random effects model (DerSimonian and Laird). The median values are used to define cut-offs for trial size, age, prevalence of males, diabetics, symptomatic patients, and for grade of baseline stenosis. A *p*-value <0.05 was considered significant. AV: arteriovenous; CAS: carotid artery stenting; DF: distal filter; PO: proximal occlusion

## **Study limitations**

The current study presents some limitations: this meta-analysis relies on data belonging to both randomised and observational studies. However, there was no interaction between study design and outcomes. The majority of the studies included were not powered for clinical outcomes, since they focused on surrogate endpoints, such as imaging-based measures of efficacy. On the one hand, the relatively small size and the selected nature of the population preclude fully exploring differences in relatively infrequent adverse clinical events. On the other hand, the lack of association between new cerebral lesions and adverse outcomes observed in our meta-analysis raises doubts about the role of such surrogate endpoints in future investigations of protected CAS. The risk estimates for cerebral embolisation were derived from studies in which patients were treated with different devices. Although efficacy profiles may vary, recent data suggest a plateau of clinical efficacy among devices used for contemporary CAS<sup>22</sup>. Almost all studies included in the present meta-analysis have a randomised design, and factors other than the type of cerebral protection during CAS are supposed to influence both treatment arms equally. In this respect, even the actual risk of embolisation in each phase of a CAS procedure cannot be derived from this study; any risk difference between groups is probably dependent on the type of cerebral protection. The observed statistical and clinical heterogeneity has been managed and thoroughly investigated, though unknown sources of heterogeneity cannot be definitively excluded. The presence of heterogeneity in the risk estimates underlines the hypothesis-generating nature of this meta-analysis, which, however, remains helpful for planning future investigations on this topic. The experience of centres in CAS (cut-off of >50 CAS/year)<sup>1</sup> did not modify the treatment effect: the value of operator experience remains undisputed, though the minimum of CAS procedures identifying a skilled operator remains controversial<sup>30</sup>. In addition, the confidence of operators with specific devices has not routinely been reported within the included studies, and the possible influence remains unstudied. The clinical follow-up was limited to a median of 135 days. A longer follow-up would be desirable for assessing the clinical and neurocognitive impact of new cerebral lesions at DW-MRI after protected CAS. Only one trial<sup>10</sup> among those included performed a supplemental three-month MRI after CAS: for this reason the reversibility of new cerebral lesions after CAS cannot be adequately assessed by this meta-analysis.

## Conclusions

This meta-analysis suggests that one half of patients treated with CAS under cerebral protection develop new embolic cerebral lesions at DW-MRI. The vast majority of these lesions do not lead to neurologic symptoms, and their clinical impact remains to be demonstrated. Cerebral protection with PO versus DF neither reduces cerebral embolisation nor impacts on clinical outcomes. Diabetes, baseline stenosis and symptoms impact on the risk of cerebral embolisation associated with protected CAS.

## Impact on daily practice

In daily practice, despite the clinical safety of contemporary protected CAS, subclinical cerebral embolisation still occurs. The possible association of these cerebral lesions with progressive neurocognitive decline remains an open question. Diabetes, baseline stenosis and symptoms increase the risk of embolisation associated with protected CAS. These features should be taken into account when selecting patients and cerebral protection systems.

## **Conflict of interest statement**

The authors have no conflicts of interest to declare.

## References

1. European Stroke Organisation, Tendera M, Aboyans V, Bartelink ML, Baumgartner I, Clement D, Collet JP, Cremonesi A, De Carlo M, Erbel R, Fowkes FG, Heras M, Kownator S, Minar E, Ostergren J, Poldermans D, Riambau V, Roffi M, Rother J, Sievert H, van Sambeek M, Zeller T; ESC Committee for Practice Guidelines. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). *Eur Heart J.* 2011;32:2851-906.

2. Brott TG, Halperin JL, Abbara S, Bacharach JM, Barr JD, Bush RL, Cates CU, Creager MA, Fowler SB, Friday G, Hertzberg VS, McIff EB, Moore WS, Panagos PD, Riles TS, Rosenwasser RH, Taylor AJ; American College of Cardiology Foundation; American Stroke Association; American Association of Neurological Surgeons; American College of Radiology; American Society of Neuroradiology; Congress of Neurological Surgeons; Society of Atherosclerosis Imaging and Prevention; Society for Cardiovascular Angiography and Interventions; Society of Interventional Radiology; Society of NeuroInterventional Surgery; Society for Vascular Medicine; Society for Vascular Surgery. 2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/ SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease: executive summary. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American Stroke Association, American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, Congress of Neurological Surgeons, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of NeuroInterventional Surgery, Society for Vascular Medicine, and Society for Vascular Surgery. *Circulation*. 2011;124:489-532.

3. Schmidt A, Diederich KW, Scheinert S, Braunlich S, Olenburger T, Biamino G, Schuler G, Scheinert D. Effect of two different neuroprotection systems on microembolization during carotid artery stenting. *J Am Coll Cardiol.* 2004;44:1966-9.

4. Montorsi P, Caputi L, Galli S, Ciceri E, Ballerini G, Agrifoglio M, Ravagnani P, Trabattoni D, Pontone G, Fabbiocchi F, Loaldi A, Parati E, Andreini D, Veglia F, Bartorelli AL. Microembolization during carotid artery stenting in patients with high-risk, lipid-rich plaque. A randomized trial of proximal versus distal cerebral protection. *J Am Coll Cardiol.* 2011;58:1656-63.

5. Bijuklic K, Wandler A, Tubler T, Schofer J. Impact of asymptomatic cerebral lesions in diffusion-weighted magnetic resonance imaging after carotid artery stenting. *JACC Cardiovasc Interv.* 2013;6:394-8.

6. Mousa AY, Campbell JE, Aburahma AF, Bates MC. Current update of cerebral embolic protection devices. *J Vasc Surg.* 2012;56:1429-37.

7. Stabile E, Salemme L, Sorropago G, Tesorio T, Nammas W, Miranda M, Popusoi G, Cioppa A, Ambrosini V, Cota L, Petroni G, Della Pietra G, Ausania A, Fontanelli A, Biamino G, Rubino P. Proximal endovascular occlusion for carotid artery stenting: results from a prospective registry of 1,300 patients. *J Am Coll Cardiol.* 2010;55:1661-7.

8. El-Koussy M, Schroth G, Do DD, Gralla J, Nedeltchev K, von Bredow F, Remonda L, Brekenfeld C. Periprocedural embolic events related to carotid artery stenting detected by diffusion-weighted MRI: comparison between proximal and distal embolus protection devices. *J Endovasc Ther*: 2007;14:293-303.

9. Bijuklic K, Wandler A, Hazizi F, Schofer J. The PROFI study (Prevention of Cerebral Embolization by Proximal Balloon Occlusion Compared to Filter Protection During Carotid Artery Stenting): a prospective randomized trial. *J Am Coll Cardiol.* 2012;59:1383-9.

10. Castro-Afonso LH, Abud LG, Rolo JG, Santos AC, Oliveira L, Barreira CM, Velasco TR, Pontes-Neto OM, Abud DG. Flow reversal versus filter protection: a pilot carotid artery stenting randomized trial. *Circ Cardiovasc Interv*. 2013;6:552-9.

11. Akkaya E, Vuruskan E, Gul ZB, Yildirim A, Pusuroglu H, Surgit O, Kalkan AK, Akgul O, Akgul GP, Gul M. Cerebral microemboli and neurocognitive change after carotid artery stenting with different embolic protection devices. *Int J Cardiol.* 2014;176:478-83.

12. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med.* 2009;151:264-9, W64.

13. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ*. 2003;327:557-60.

14. Jüni P, Witschi A, Bloch R, Egger M. The hazards of scoring the quality of clinical trials for meta-analysis. *JAMA*. 1999;282:1054-60.

15. Cassese S, Byrne RA, Ott I, Ndrepepa G, Nerad M, Kastrati A, Fusaro M. Paclitaxel-coated versus uncoated balloon angioplasty reduces target lesion revascularization in patients with femoro-popliteal arterial disease: a meta-analysis of randomized trials. *Circ Cardiovasc Interv.* 2012;5:582-9.

16. Sterne JA, Egger M, Smith GD. Systematic reviews in health care: Investigating and dealing with publication and other biases in meta-analysis. *BMJ*. 2001;323:101-5.

17. Cano MN, Kambara AM, de Cano SJ, Pezzi Portela LA, Paes AT, Costa JR Jr, Abizaid AA, Moreira SM, Sousa AG, Sousa JE. Randomized comparison of distal and proximal cerebral protection during carotid artery stenting. *JACC Cardiovasc Interv.* 2013;6:1203-9.

18. Flach ZH, Ouhlous M, Hendriks JM, van Sambeek MR, Veenland JF, van Dijk LC, van der Lugt A. Diffusion-weighted imaging to compare different cerebral protection devices in carotid artery stenting. *EuroIntervention*. 2007;3:243-8.

 Martin DO, Austin H. An exact method for meta-analysis of case-control and follow-up studies. *Epidemiology*. 2000;11:255-60.
 Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD,

Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: heart disease and stroke statistics--2014 update: a report from the American Heart Association. *Circulation*. 2014;129:399-410.

21. Brott TG, Hobson RW 2nd, Howard G, Roubin GS, Clark WM, Brooks W, Mackey A, Hill MD, Leimgruber PP, Sheffet AJ, Howard VJ, Moore WS, Voeks JH, Hopkins LN, Cutlip DE, Cohen DJ, Popma JJ, Ferguson RD, Cohen SN, Blackshear JL, Silver FL, Mohr JP, Lal BK, Meschia JF; CREST Investigators. Stenting versus endarterectomy for treatment of carotid-artery stenosis. *N Engl J Med.* 2010;363:11-23.

22. Giri J, Kennedy KF, Weinberg I, Hawkins BM, Press MC, Drachman D, McCormick DJ, Aronow HD, White CJ, Rosenfield K, Yeh RW. Comparative effectiveness of commonly used devices for carotid artery stenting: an NCDR (National Cardiovascular Data Registry) analysis. *JACC Cardiovasc Interv.* 2014;7:171-7.

23. Gress DR. The problem with asymptomatic cerebral embolic complications in vascular procedures: what if they are not asymptomatic? *J Am Coll Cardiol.* 2012;60:1614-6.

24. Maggio P, Altamura C, Landi D, Migliore S, Lupoi D, Moffa F, Quintiliani L, Vollaro S, Palazzo P, Altavilla R, Pasqualetti P, Errante Y, Quattrocchi CC, Tibuzzi F, Passarelli F, Arpesani R, di Giambattista G, Grasso FR, Luppi G, Vernieri F. Diffusion-weighted lesions after carotid artery stenting are associated with cognitive impairment. *J Neurol Sci.* 2013;328: 58-63.

25. Zhou W, Hitchner E, Gillis K, Sun L, Floyd R, Lane B, Rosen A. Prospective neurocognitive evaluation of patients undergoing carotid interventions. *J Vasc Surg.* 2012;56:1571-8.

26. Hogan AM, Shipolini A, Brown MM, Hurley R, Cormack F. Fixing hearts and protecting minds: a review of the multiple, interacting factors influencing cognitive function after coronary artery bypass graft surgery. *Circulation.* 2013;128:162-71.

27. Bijuklic K, Wandler A, Varnakov Y, Tuebler T, Schofer J. Risk factors for cerebral embolization after carotid artery stenting with embolic protection: a diffusion-weighted magnetic resonance imaging study in 837 consecutive patients. *Circ Cardiovasc Interv.* 2013;6:311-6.

28. Spagnoli LG, Mauriello A, Sangiorgi G, Fratoni S, Bonanno E, Schwartz RS, Piepgras DG, Pistolese R, Ippoliti A, Holmes DR Jr. Extracranial thrombotically active carotid plaque as a risk factor for ischemic stroke. *JAMA*. 2004;292:1845-52.

29. Stabile E, Sannino A, Schiattarella GG, Gargiulo G, Toscano E, Brevetti L, Scudiero F, Giugliano G, Perrino C, Trimarco B, Esposito G. Cerebral embolic lesions detected with diffusion-weighted magnetic resonance imaging following carotid artery stenting: a meta-analysis of 8 studies comparing filter cerebral protection and proximal balloon occlusion. *JACC Cardiovasc Interv.* 2014;7:1177-83.

30. Calvet D, Mas JL, Algra A, Becquemin JP, Bonati LH, Dobson J, Fraedrich G, Jansen O, Mali WP, Ringleb PA, Chatellier G, Brown MM; Carotid Stenting Trialists' Collaboration. Carotid stenting: is there an operator effect? A pooled analysis from the carotid stenting trialists' collaboration. *Stroke*. 2014;45:527-32.

## Online data supplement

**Online Figure 1**. Funnel plot distribution of studies included in the meta-analysis according to primary outcome.

**Online Figure 2**. Meta-regression analysis evaluating the relationship between the incidence of new cerebral embolisation and the risk of death/cerebrovascular events (CVE).

Online Table 1. PRISMA checklist.

**Online Table 2**. Main characteristics of studies included in the meta-analysis.

**Online Table 3**. Endpoint definitions within studies included in the meta-analysis.

Online Table 4. Assessment of risk of bias.

## **Online data supplement**



**Online Figure 1.** Funnel plot distribution of studies included in the meta-analysis according to primary outcome. The standard error (SE) of the logarithm of odds ratio (OR) - SE(log[OR]) - is plotted against the OR of new cerebral lesions. The absence of publication bias can be evaluated both visually and mathematically. A p-value <0.05 indicates significance.



**Online Figure 2.** Meta-regression analysis evaluating the relationship between the incidence of new cerebral embolisation and the risk of death/cerebrovascular events (CVE). The relationship between death/CVE, measured as the natural logarithm of odds ratio  $- \ln(OR) - for \ death/CVE$  and the incidence of new cerebral embolisation is investigated with a weighted random effect meta-regression analysis. The size of circles is proportional to the weight of each study in the fitted random-effects meta-regression. Exp(b) is presented with 95% confidence interval whilst the symbol  $\Delta$  refers to "change". A p-value <0.05 indicates significance. SE: standard error

## Online Table 1. PRISMA checklist.

| Section/topic                      | #  | Checklist item                                                                                                                                                                                                                                                                                              | Reported on page # |
|------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| TITLE                              |    |                                                                                                                                                                                                                                                                                                             |                    |
| Title                              | 1  | Identify the report as a systematic review, meta-analysis, or both.                                                                                                                                                                                                                                         | 1                  |
| ABSTRACT                           |    |                                                                                                                                                                                                                                                                                                             |                    |
| Structured<br>summary              | 2  | Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. | 2                  |
| INTRODUCTION                       |    |                                                                                                                                                                                                                                                                                                             |                    |
| Rationale                          | 3  | Describe the rationale for the review in the context of what is already known.                                                                                                                                                                                                                              | 4                  |
| Objectives                         | 4  | Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).                                                                                                                                                  | 4                  |
| METHODS                            |    |                                                                                                                                                                                                                                                                                                             |                    |
| Protocol and registration          | 5  | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.                                                                                                                               | NA                 |
| Eligibility criteria               | 6  | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.                                                                                                      | S-4                |
| Information sources                | 7  | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.                                                                                                                                  | 5 and S-4          |
| Search                             | 8  | Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.                                                                                                                                                                               | S-4                |
| Study selection                    | 9  | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).                                                                                                                                                   | 5                  |
| Data collection process            | 10 | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.                                                                                                                                  | 5                  |
| Data items                         | 11 | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.                                                                                                                                                                       | S-12               |
| Risk of bias in individual studies | 12 | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.                                                                                      | S-12               |
| Summary measures                   | 13 | State the principal summary measures (e.g., risk ratio, difference in means).                                                                                                                                                                                                                               | 6                  |
| Synthesis of results               | 14 | Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., $I^2$ ) for each meta-analysis.                                                                                                                                                   | 6                  |
| Risk of bias across<br>studies     | 15 | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).                                                                                                                                                                | 6                  |
| Additional analyses                | 16 | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.                                                                                                                                                            | 6                  |
| RESULTS                            |    |                                                                                                                                                                                                                                                                                                             |                    |
| Study selection                    | 17 | Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.                                                                                                                                             | Figure 1           |
| Study<br>characteristics           | 18 | For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.                                                                                                                                                                | 7-8                |
| Risk of bias within studies        | 19 | Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).                                                                                                                                                                                                   | S-12               |
| Results of individual studies      | 20 | For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.                                                                                                    | Figure 2           |
| Synthesis of results               | 21 | Present results of each meta-analysis done, including confidence intervals and measures of consistency.                                                                                                                                                                                                     | 8-9                |
| Risk of bias across<br>studies     | 22 | Present results of any assessment of risk of bias across studies (see item 15).                                                                                                                                                                                                                             | S-12               |
| Additional analysis                | 23 | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see item 16]).                                                                                                                                                                                       | 9-10               |
| DISCUSSION                         |    |                                                                                                                                                                                                                                                                                                             |                    |
| Summary of evidence                | 24 | Summarise the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).                                                                                                                        | 10                 |

## Online Table 1. PRISMA checklist. (cont'd)

| Section/topic | #  | Checklist item                                                                                                                                                | Reported on page # |
|---------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| DISCUSSION    |    |                                                                                                                                                               |                    |
| Limitations   | 25 | Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete retrieval of identified research, reporting bias). | 13                 |
| Conclusions   | 26 | Provide a general interpretation of the results in the context of other evidence, and implications for future research.                                       | 12-14              |
| FUNDING       |    |                                                                                                                                                               |                    |
| Funding       | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.                    | 1                  |

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

#### Search strategy and selection criteria

We searched Medline, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), scientific session abstracts and relevant websites (www.cardiosource.com, www.clinicaltrialresults.org, www.escardio.org, www.tctmd.com, www.theheart.org) without restricting language or publication status. Search terms included the keywords and the corresponding Medical Subject Headings for: "carotid", "stenosis", "stent(s)", "cerebral protection", "embolic protection device", "proximal occlusion", "clamping", "filter" "distal filter", "magnetic resonance imaging (MRI)", "diffusion-weighted (DW)-MRI", "trial", and "randomised trial". The references listed in all eligible publications were also checked to identify further citations. Inclusion criteria were: (1) transfemoral protected CAS; (2) routine DW-MRI before and after CAS (not only in case of complication); (3)  $\geq$ 30-day clinical follow-up. Exclusion criteria were: (1) vessel treated other than internal carotid artery; (2) device used for cerebral embolic protection other than PO or DF; (3) <10 patients per arm enrolled; (4) duplicated data. Two searches were performed: the first on 25 December 2013, the last on 31 August 2014.

#### Search strategy - PubMed

"carotid" [All Fields] AND ("carotid artery, internal" [MeSH Terms] OR ("carotid" [All Fields] AND "artery"[All Fields] AND "internal"[All Fields]) OR "internal carotid artery"[All Fields] OR ("carotid" [All Fields] AND "artery" [All Fields]) OR "carotid artery" [All Fields] OR ("carotid" [All Fields] AND "artery" [All Fields]) OR "carotid artery" [All Fields] OR ("carotid" [All Fields] AND "arteries" [MeSH Terms] OR ("carotid" [All Fields] AND "arteries" [All Fields]) OR "carotid arteries" [All Fields] OR ("carotid" [All Fields] AND "arteries" [All Fields]) OR "carotid arteries" [All Fields] OR ("carotid" [All Fields] AND "arteries" [All Fields]) OR "carotid arteries" [All Fields] OR ("carotid" [All Fields] AND "artery"[All Fields]) OR "carotid arteries" [All Fields] OR ("carotid" [All Fields] AND "artery"[All Fields]] OR ("embolism" [All Fields] AND "stents" [All Fields] OR ("embolism" [All Fields]] OR ("embolism" [All Fields]] OR ("embolism" [All Fields]] OR ("embolism" [All Fields]] OR "embolism" [All Fields] OR "embolism" [All Fields]] OR "magnetic resonance imaging" [MeSH Terms] OR ("magnetic" [All Fields]] AND "resonance" [All Fields]] AND "imaging" [All Fields]] OR "magnetic resonance imaging" [All Fields]] OR "magnetic resonance imaging" [All Fields]] OR "mri" [All Fields]] OR "mri" [All Fields]] AND "trial" [All Fields]] AND (randomized [All Fields]] AND ("clinical trials as topic" [MeSH Terms]] OR ("clinical" [All Fields]] OR "trial" [All Fields]] OR "trials" [All Fields]] OR "trial" [All Fields]] OR "trial" [All Fields]] OR "trial" [All Fields]])]

| *Device predomir<br>imaging; ECA: ext<br>resonance imagir                                                                                                                                     | Flach et al <sup>18</sup>                                                                                                                                                         | Montorsi et al <sup>4</sup>                                                                                                                                                                                                                                                                                                                         | El-Koussy et<br>al <sup>8</sup>                                                                                                                                                                                        | de<br>Castro-Afonso<br>et al <sup>10</sup>                                                                                                                                                                                                                                                                                            | Cano et al <sup>17</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bijuklic et al <sup>9</sup>                                                                                                                                                                                                                                                                              | Akkaya et al <sup>11</sup>                                                                                                                                                                                                                                                                                                                                                                                                                    | Unline Table Study                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| antly used. † These two latter devices consisted<br>ernal carotid artery; FLAIR-MR1: fluid-attenuate<br>Ng; OAT: oral anticoagulant therapy; TCA: target                                      | Symptomatic ICA stenosis ≥70%                                                                                                                                                     | Symptomatic ICA stenosis ≥50%;<br>asymptomatic ICA stenosis ≥75%                                                                                                                                                                                                                                                                                    | Symptomatic and asymptomatic ICA<br>stenosis ≥70%                                                                                                                                                                      | Age $\geq 18$ years; life expectancy $\geq 1$ year;<br>symptomatic ICA stenosis $\geq 50\%$ ;<br>asymptomatic ICA stenosis $\geq 60\%$ ; $\geq 1$<br>patent intracranial collateral vessel; ECA<br>diameter $\leq 6$ mm; absence of any arterial<br>branch emerging below ECA occlusion<br>site                                       | Age ≥40 years; symptomatic ICA stenosis<br>≥50%; asymptomatic ICA stenosis ≥80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                     | Symptomatic ICA stenosis ≥60%;<br>asymptomatic ICA stenosis ≥80%                                                                                                                                                                                                                                                                                                                                                                              | z. Main cnaracteristics of studies<br>Main inclusion criteria |
| d of an extracorporeal arteriovenous shunt in addition to a cerebral<br>d inversion recovery magnetic resonance image, ICA: internal carot<br>carotid artery; TIA: transient ischaemic attack | Unavailability of DW-MRI after CAS                                                                                                                                                | Myocardial infarction <72 hrs; major neurological deficit,<br>stroke or retinal embolism ≤1 month; severe common<br>carotid or intracranial artery lesion; occlusion of ipsilateral<br>ECA; occlusion of the TCA occurred after indication of CAS;<br>occlusion of contralateral ICA; antiplatelet and/or<br>anticoagulant therapy contraindication | Unavailability of DW-MRI after CAS                                                                                                                                                                                     | Contralateral ICA stenosis ≥50%; total occlusion of the<br>TCA; ischaemic stroke ≤14 days; MI <6 months; major<br>surgical procedure ≤30 before or planned ≤30 days after<br>CAS; creatinine clearance ≤40 mL/min; bleeding diathesis<br>or hypercoagulable state; presence of any high- or<br>medium-risk sources for cardioembolism | Extensive stroke; ischaemic ipsilateral stroke progressing<br>to haemorrhagic ≤60 days; contraindication to MRI;<br>decreased brain reserve; severe common carotid or<br>intracranial artery lesion; occlusion of ipsilateral ECA;<br>occlusion of the TCA occurred after indication of CAS;<br>occlusion of contralateral ICA; severe or obstructive lesion<br>in vertebral basilar segments; extremely calcified aortic arc<br>compromising CCA or brachicephalic trunk ostia; OAT; ACS<br>≤30-day; bleeding diathesis ≤30-day or coagulopathy; | Ischaemic stroke ≤48 hrs; total occlusion of the TCA;<br>contraindication for MRI; previous major stroke<br>confounding the assessment of endpoint; ISR; coagulation<br>disorders; gastric ulcer or gastrointestinal bleeding<br>≤30 days; antiplatelet and/or anticoagulant therapy<br>contraindication | Any previous major stroke confounding the assessment of<br>endpoint; stroke <30 days; total occlusion of the ICA or<br>ECA; "string sign" of the ICA; contralateral ICA stenosis<br><50%; extremely tortuous or calcified aortic arch<br>compromising CCA or brachiocephalic trunk ostia;<br>antiplatelet and/or anticoagulant therapy contraindication;<br>contraindication for MRI; inability to read; Mini-Mental<br>State Examination <24 | Main exclusion criteria                                       |
| flow-reversal system. ACS: a<br>tid arteny; ISR: in-stent resten                                                                                                                              | Number, diameter and<br>location of new cerebral<br>ischaemic lesions at<br>DW-MRI after CAS                                                                                      | Microembolic signals<br>(TCD)                                                                                                                                                                                                                                                                                                                       | Number, diameter and<br>location of new cerebral<br>ischaemic lesions at<br>DW-MRI after CAS                                                                                                                           | Incidence, number, and<br>size of new cerebral<br>ischaemic lesions at<br>DW-MRI after CAS                                                                                                                                                                                                                                            | Incidence, number, and<br>size of new cerebral<br>ischaemic lesions at<br>DW-MRI after CAS                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Incidence of new<br>cerebral ischaemic<br>lesions at DW-MRI after<br>CAS<br>CAS                                                                                                                                                                                                                          | Incidence of new<br>cerebral ischaemic<br>lesions at DW-MRI after<br>CAS; change in<br>neurocognitive function<br>after CAS                                                                                                                                                                                                                                                                                                                   | Primary outcomes                                              |
| cute coronary syndrome; CAS: carot<br>osis; MACCE: major adverse cardia                                                                                                                       | Death, stroke                                                                                                                                                                     | Number, dia meter and<br>location of new cerebral<br>ischaemic lesions at DW-MRI<br>after CAS; death, stroke, MI                                                                                                                                                                                                                                    | Death, stroke                                                                                                                                                                                                          | 3-month MACCE (stroke,<br>symptomatic MI, vascular<br>complications, or death); TIA<br>≤24 hours after CAS and at<br>3-month follow-up, and<br>3-month remnant ischaemic<br>brain lesions on FLAIR-MRI                                                                                                                                | Device success; 12-month<br>MACCE (death, major stroke,<br>and MI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number and volume of new<br>cerebral ischaemic lesions,<br>30-day MACCE (death,<br>stroke, MI, and vascular<br>complications); bleeding<br>crossover                                                                                                                                                     | Number, volume and location<br>of new cerebral ischaemic<br>lesions at DW-MRI after CAS;<br>death, TIA, stroke                                                                                                                                                                                                                                                                                                                                | Other outcomes reported                                       |
| id artery stent; DW-M<br>c and cerebrovascula                                                                                                                                                 | ACCULINK<br>(Guidant, Santa<br>Clara, CA, USA),<br>open cell*                                                                                                                     | WALLSTENT<br>(Boston<br>Scientific,<br>Marlborough,<br>MA, USA), closed<br>cell                                                                                                                                                                                                                                                                     | ACCULINK<br>(Guidant, Santa<br>Clara, CA, USA),<br>open cell                                                                                                                                                           | WALLSTENT<br>(Boston<br>Scientific,<br>Marlborough,<br>MA, USA), closed<br>cell                                                                                                                                                                                                                                                       | Precise (Cordis,<br>Johnson &<br>Johnson,<br>Bridgewater, NJ,<br>USA), open cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cristallo Ideale<br>(Invatec/<br>Medtronic<br>Vascular Inc.,<br>Santa Rosa, CA,<br>USA), hybrid cell                                                                                                                                                                                                     | Cristallo Ideale<br>(Invatec/<br>Medtronic<br>Vascular Inc.,<br>Santa Rosa, CA,<br>USA), hybrid cell                                                                                                                                                                                                                                                                                                                                          | Stent                                                         |
| IRI: diffusion-weighted magnetic resonance<br>r events; MI: myocardial infarction; MRI: magnetic                                                                                              | Parodi Anti-Emboli System (ArteriA Medical<br>Science Inc., San Francisco, CA, USA)†<br>versus Spider RX Embolic Protection Device<br>(ev3, Plymouth, MN, USA), eccentric design* | Mo.Ma Ultra proximal cerebral protection<br>(Invatec/Medtronic Vascular Inc., Santa<br>Rosa, CA, USA) versus FilterWire EZ Embolic<br>Protection System (Boston Scientific,<br>Marlborough, MA, USA), eccentric design                                                                                                                              | Mo.Ma Ultra proximal cerebral protection<br>(Invatec/Medtronic Vascular Inc., Santa<br>Rosa, CA, USA) versus FilterWire EZ Embolic<br>Protection System (Boston Scientific,<br>Marlborough, MA, USA), eccentric design | GORE Flow Reversal System (Gore &<br>Associates, Flagstaff, AZ, USA)† versus<br>FilterWire EZ Embolic Protection System<br>(Boston Scientific, Marlborough, MA, USA),<br>eccentric design                                                                                                                                             | Mo.Ma Ultra proximal cerebral protection<br>(Invatec/Medtronic Vascular Inc., Santa<br>Rosa, CA, USA) versus ANGIOGUARD RX<br>Emboli Capture System (Cordis, Johnson &<br>Johnson, Bridgewater, NJ, USA), concentric<br>design                                                                                                                                                                                                                                                                                                                    | Mo.Ma Ultra proximal cerebral protection<br>(Invatec/Medtronic Vascular Inc., Santa<br>Rosa, CA, USA) versus Emboshield Protection<br>System, (Abbott Vascular, Abbott Park, IL,<br>USA), concentric design                                                                                              | Mo.Ma Ultra proximal cerebral protection<br>(Invatec/Medtronic Vascular Inc., Santa<br>Rosa, CA, USA) versus Emboshield Protection<br>System, (Abbott Vascular, Abbott Park, IL,<br>USA), concentric design                                                                                                                                                                                                                                   | Embolic protection                                            |

## Online Table 3. Endpoint definitions within studies included in the meta-analysis.

| Study                                          | New cerebral lesion                                                                                                                                                                                                                    | New ipsilateral cerebral lesion                                                                                                                                                                                                 | New contralateral cerebral lesion                                                                                                                  | Death/CVE                        |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Akkaya et al <sup>11</sup>                     | A new increased signal intensity on either axial or<br>coronal DW-MRI sequence after CAS, confirmed on<br>the apparent diffusion coefficient                                                                                           | A new cerebral ischaemic lesion present<br>in the hemisphere supplied by the treated<br>carotid artery                                                                                                                          | A new cerebral ischaemic lesion<br>present in the hemisphere not supplied<br>by the treated carotid artery                                         | All-cause death/<br>stroke, TIA  |
| Bijuklic et al <sup>9</sup>                    | A new focal hyperintense area detected by the FLAIR<br>sequence after CAS, corresponding to a restricted<br>diffusion signal at DW-MRI, confirmed by apparent<br>diffusion coefficient mapping to rule out a<br>shine-through artefact | A new cerebral ischaemic lesion present<br>in the hemisphere supplied by the treated<br>carotid artery                                                                                                                          | A new cerebral ischaemic lesion<br>present in the hemisphere not supplied<br>by the treated carotid artery                                         | All-cause death/<br>stroke       |
| Cano et al <sup>17</sup>                       | A new focal hyperintense microischaemic area<br>detected after CAS and not present at DW-MRI<br>performed before intervention                                                                                                          | A new cerebral ischaemic lesion occurred<br>in the hemisphere supplied by the target<br>vessel                                                                                                                                  | A new cerebral ischaemic lesion<br>occurred in the hemisphere not<br>supplied by the target vessel                                                 | All-cause death/<br>major stroke |
| de Castro-Afonso<br>et al <sup>10</sup>        | A new focal hyperintense area detected as<br>a restricted diffusion signal at DW-MRI after CAS,<br>confirmed by apparent diffusion coefficient<br>mapping to rule out a shine-through artefact                                         | A new cerebral ischaemic lesion occurred<br>in the hemisphere related to the stented<br>carotid territory                                                                                                                       | A new cerebral ischaemic lesion<br>occurred in the hemisphere not related<br>to the stented carotid territory                                      | All-cause death/<br>stroke, TIA  |
| El-Koussy et al <sup>8</sup>                   | A new focal hyperintense area detected by<br>assessing each vessel territory (the anterior, middle,<br>and posterior cerebral arteries) at DW-MRI after CAS                                                                            | A new cerebral ischaemic lesion observed<br>in the anterior and middle territories<br>ipsilateral to the side of stenting or in the<br>ipsilateral posterior territory in cases of<br>a foetal posterior cerebral artery origin | A new cerebral ischaemic lesion in<br>territories supplied by the ipsilateral<br>posterior circulation or contralateral to<br>the side of stenting | All-cause death/<br>stroke       |
| Montorsi et al <sup>4</sup>                    | A new focal lesion detected at cerebral DW-MRI<br>after CAS, including T1-weighted and T2-weighted<br>FLAIR and DW sequences                                                                                                           | A new cerebral ischaemic lesion observed<br>inside the vascular territory of the target<br>artery                                                                                                                               | N/R                                                                                                                                                | All-cause death/<br>stroke, TIA  |
| Flach et al <sup>18</sup>                      | A new hyperintense cerebral lesion on the DW-MRI sequence after CAS                                                                                                                                                                    | A new cerebral ischaemic supratentorial lesion at the side of the treated carotid artery                                                                                                                                        | A new cerebral ischaemic<br>supratentorial lesion at the side of the<br>contralateral carotid artery                                               | All-cause death/<br>stroke       |
| CAS: carotid artery s<br>TIA: transient ischae | tenting; CVE: cerebrovascular events; DW-MRI: diffusion-w<br>mic attack                                                                                                                                                                | eighted magnetic resonance imaging; FLAIR: flu                                                                                                                                                                                  | id-attenuated inversion recovery; N/R: not re                                                                                                      | ported;                          |

## Online Table 4. Assessment of risk of bias.

| Study                                   | Random sequence generation  | Allocation<br>concealment | Blinding of<br>participants | Blinding of<br>outcome<br>assessment | Incomplete<br>outcome data | Selective outcome<br>reporting | Sample size calculation  | Study funding               |
|-----------------------------------------|-----------------------------|---------------------------|-----------------------------|--------------------------------------|----------------------------|--------------------------------|--------------------------|-----------------------------|
| Akkaya et al <sup>11</sup>              | Yes                         | No                        | No                          | Yes                                  | Yes (flow diagram)         | Yes                            | No                       | No<br>(investigator-driven) |
| Bijuklic et al <sup>9</sup>             | Yes                         | No                        | No                          | Yes                                  | Yes (flow diagram)         | Yes                            | No                       | No<br>(investigator-driven) |
| Cano et al <sup>17</sup>                | Yes<br>(computer-generated) | No                        | No                          | Yes                                  | No                         | Yes                            | No                       | No<br>(investigator-driven) |
| de Castro-Afonso<br>et al <sup>10</sup> | Yes<br>(computer-generated) | No                        | No                          | Yes                                  | Yes (flow diagram)         | Yes                            | Yes (superiority design) | No<br>(investigator-driven) |
| El-Koussy et al <sup>8</sup>            | Yes                         | No                        | No                          | Yes                                  | No                         | Yes                            | No                       | No<br>(investigator-driven) |
| Montorsi et al <sup>4</sup>             | Yes                         | No                        | No                          | Yes                                  | No                         | Yes                            | Yes (superiority design) | No<br>(investigator-driven) |
| Flach et al <sup>18</sup>               | N/A                         | No                        | No                          | No                                   | No                         | Yes                            | No                       | No<br>(investigator-driven) |
| N/A: not applicable                     |                             |                           |                             | •                                    |                            |                                |                          |                             |