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Abstract
The advent of intracoronary stents has greatly increased the safety and applicability of percutaneous coro-
nary interventions. One of the drawbacks of drug-eluting stents (DES) is the increased risk of late and very 
late stent thrombosis (ST). It was anticipated that the risks of ST after DES implantation would be solved 
with the advent of fully biodegradable scaffolds, which offer the possibility of transient scaffolding of the 
vessel to prevent acute vessel closure and recoil while also transiently eluting an antiproliferative drug to 
counteract constrictive remodelling and excessive neointimal hyperplasia. In spite of the enthusiasm for 
the concept of bioresorbable scaffolds, current clinical data on the Absorb bioresorbable vascular scaffold 
(BVS) have generated concerns about scaffold thrombosis (ScT) in both the early and late phases. However, 
the causes of ScT in both the early and late phases have yet to be fully elucidated. This article seeks to pro-
vide insights into the possible mechanical causes of ScT in the early and late phases with data stemming 
from intracoronary imaging (intravascular ultrasound and optical coherence tomography) of the currently 
published ScT cases following the implantation of BVS and reviews the practical recommendations for 
implantation of the BVS made by a group of experts.
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Introduction
The advent of intracoronary stents has greatly increased the 
safety and applicability of percutaneous coronary interventions 
(PCI). Large-scale randomised trials and all-comer registries have 
shown excellent results of PCI with drug-eluting stents (DES) 
in terms of the need for repeat revascularisation. However, one 
of the drawbacks of DES is the increased risk of late and very 
late stent thrombosis (ST). Registries of all-comers treated with 
DES have shown late ST rates of 0.53% per year, with a con-
tinued increase to 3% over four years1. Post-mortem pathologi-
cal specimens of DES revealed significant numbers of uncovered 
struts with evidence of a persistent inflammatory reaction around 
the stent struts2. Second-generation DES have solved some aspects 
of these problems, and the frequency of ST in second-generation 
DES (everolimus-eluting stent [EES]) has been reduced to 0.7% at 
a mean follow-up of 21.7 months3.

It was anticipated that ST in the late and very late phases after 
DES implantation would be solved with the advent of fully bio-
degradable scaffolds, which offer the possibility of transient scaf-
folding of the vessel to prevent acute vessel closure and recoil 
while also transiently eluting an antiproliferative drug to counter-
act constrictive remodelling and excessive neointimal hyperplasia. 
As drug elution and scaffolding are temporary until the vessel has 
healed, no foreign material potentially triggering very late scaf-
fold thrombosis (ScT), such as non-endothelialised struts and drug 
polymers2, would remain in the vessel.

In spite of the enthusiasm for the concept of bioresorbable 
scaffolds, current clinical data on the Absorb bioresorbable vas-
cular scaffold (BVS) (Abbott Vascular, Santa Clara, CA, USA) 
have generated concerns about ScT in both the early and late 
phases4-8. Recently published meta-analyses have revealed that 
patients treated with a BVS had a higher risk of definite or prob-
able ScT than those treated with a metallic EES (odds ratio [OR]: 
1.99-2.09)9. However, the causes of ScT in both the early and late 
phases have yet to be fully elucidated.

The purpose of this review article is to provide insights into the 
possible mechanical causes of ScT in the early and late phases, with 
data stemming from intracoronary imaging (intravascular ultrasound 
[IVUS] and optical coherence tomography [OCT]) of the currently 
published ScT cases following the implantation of BVS.

Editorial, see page 1684

DEFINITIONS OF SCAFFOLD THROMBOSIS
The sensitivity and specificity of the definition of ScT depend on 
the level of certainty required (a better judgement can be made 
in the presence of angiography or autopsy studies), and also on 
the accuracy of data available during adjudication. A standard-
ised definition of ScT was proposed by the Academic Research 
Consortium (ARC) (Table 1). The ARC definition acknowledges 
these issues by establishing a gradation of certainty (definite, 
probable, and possible), and standardising the timing of ScT 
(acute, subacute, late, and very late), which may have different 
pathophysiological mechanisms and clinical implications. Acute 

Table 1. Definition of scaffold thrombosis according to the 
Academic Research Consortium.

Timing

Early Acute 0 to 24 hours after scaffold implantation

Subacute 24 hours to 30 days after scaffold implantation 

Late 30 days to 1 year after scaffold implantation 

Very late 1 year after scaffold implantation 

Level of certainty

Definite Angiographic or pathological confirmation of 
partial or total thrombotic occlusion within the 
peri-scaffold region AND at least one of the 
following additional criteria: 
1) acute ischaemic symptoms; 
2) ischaemic electrocardiogram changes; 
3) elevated cardiac biomarkers

Probable Any unexplained death within the first 
30 days. Any myocardial infarction related to 
documented acute ischaemia in the territory 
of the implanted scaffold without angiographic 
confirmation of scaffold thrombosis and in the 
absence of any other obvious cause. 

Possible Any unexplained death beyond 30 days.

or subacute can also be replaced by the term early ScT. Although 
ARC definitions added uniformity, they remain an imperfect 
balance of sensitivity and specificity: “definite” ScT is highly 
specific but probably underestimates true frequency, whereas 
“possible” ScT, although more sensitive, lacks diagnostic cer-
tainty. Most contemporary studies exclude the category of “pos-
sible” ScT and select the endpoints of “definite” or “probable” 
ScT to provide a balance of specificity and sensitivity. In this 
review article, we focus only on the definite ScT case reports to 
provide some insights into the mechanical causes of ScT using 
intracoronary imaging.

INCIDENCE OF SCAFFOLD THROMBOSIS
The incidence of ScT has been evaluated in clinical trials, reg-
istries and meta-analyses. The interpretation of data may vary 
depending on the study population and study design. As shown 
in Table 2-Table 4, the estimated rates of early definite, and defi-
nite or probable ScT ranged from 0.42% to 1.37%. The highest 
incidence of early ScT was observed in acute coronary syndrome 
(ACS) (1.37%) (Table 3) followed by an all-comer population 
(1.08%) (Table 4) and stable patients undergoing elective PCI 
(0.86%) (Table 2). This observation is similar to that of metallic 
DES; patients with ACS (0-3.1%) had a higher risk of early ST 
compared with stable patients (0.3-0.4%)10.

The incidence of late and very late ScT ranged from 0.31% to 
1.00%. Of note, the incidence of ScT in non-complex and ACS 
lesions decreased over time (non-complex lesions, early ScT 
0.86% vs. late and very late ScT 0.31% [Table 2]; ACS, 1.37% vs. 
0.47% [Table 3]), whereas it was stable in an all-comer popula-
tion (all-comers, 1.08% vs. 1.00% [Table 4]). The theoretical risk 
reduction of ScT in the late phase needs to be evaluated in further 
investigations with long-term follow-up.
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Table 2. Incidence of scaffold thrombosis in non-complex lesions.

Target Study design Study N
Acute ScT, 

N (%)
Subacute 
ScT, N (%)

Early ScT, 
N (%)

Late ScT 
and very late 
ScT, N (%)

Reference

Non-complex 
lesions

RCT EVERBIO II 78 0 0 0 NA¶ 45

RCT ABSORB China 238 0 Def 1 (0.4%) Def 1 (0.4%) 0 5

RCT ABSORB Japan 226 0 Def 3 (1.1%) Def 3 (1.1%) Def 1 (0.4%) 6

RCT ABSORB II 335 Def 1 (0.3%) Def 1 (0.3%) Def 2 (0.6%) 0 6

RCT ABSORB III 1,322 Def/prob 
2 (0.2%)

Def/prob 
12 (0.9%)

Def/prob 
14 (1.1%)

Def/prob 
6 (0.5)

46

Observational study ABSORB B 101 0 0 0 0 47

Observational study ABSORB A 30 0 0 0 0 48

Incidence of definite/probable ScT 2,330 0.13% 0.73% 0.86% 0.31%
¶ Follow-up shorter than 1 year. Def: definite scaffold thrombosis; Def/prob: definite or probable scaffold thrombosis; NA: not available; RCT: randomised 
controlled trial; ScT: scaffold thrombosis

Table 3. Incidence of scaffold thrombosis in acute coronary syndrome.

Target Study design Study N
Acute ScT, 

N (%)

Subacute 
ScT,  N 

(%)

Early ScT,  N 
(%)

Late ScT  and 
very late ScT, N 

(%)

Refer-
ence

ACS (UAP, 
NSTEMI, 
STEMI)

Single-centre registry 
prospective POLAR ACS 100 0 0 0 Def 1 (1.0%) 49

Single-centre registry 
retrospective Gori et al 150 Def 1 (0.7%) Def 1 (0.7%) Def 2 (1.3%) Def 1 (0.7%) 50

STEMI RCT TROFI II 95 0 Def 1 (1.1%) Def 1 (1.1%) 0 31

Single-centre prospective Prague 19 41 0 0 Def 1 (2.43%) NA¶ 51

Single-centre prospective Diletti et al, 
BVS STEMI 49 0 0 0 NA¶ 52

Single-centre registry 
retrospective Wiebe et al 25 0 0 0 0 53

Multicentre registry 
prospective

Cortese et al, 
BVS-RAI 122 0 0 Def 2 (1.6%) Def 1 (0.8%) 54

PS matching comparison Ielasi et al RAI 
registry 74 0 Def 1 (1.3%) Def 1 (1.3%) 0 55

PS matching comparison BVS-
EXAMINATION 290 NA NA Def/prob 6 (2.1%) 

Def 4 (1.4%)
Def/prob 1 (0.3%) 

Def 1 (0.3%) 8

ACS Incidence of definite/probable ScT 946 0.15% 0.46% 1.37% 0.47%
¶ Follow-up shorter than 1 year. Def: definite scaffold thrombosis; Def/prob: definite or probable scaffold thrombosis; NA: not available; RCT: randomised 
controlled trial; ScT: scaffold thrombosis

Possible mechanical causes of scaffold 
thrombosis: insights from case reports with 
intracoronary imaging
Two independent reviewers (Y. Sotomi and P. Suwannasom) 
systematically searched (March 2016) MEDLINE/PubMed and 
available abstract data, applying the search terms “bioresorbable 
scaffold” and “thrombosis”. Data were limited to human studies 
using the Absorb BVS. Presentation slides of late-breaking clin-
ical trials, including EuroPCR 2015 and TCT 2015 meetings in 
TCTMD.com, were also obtained. From the studies obtained, only 
the case reports and case series of ScT were focused upon.

In the current literature, 100 case reports of definite ScT (acute 
and subacute ScT, n=63; late and very late ScT, n=37) were iden-
tified4,6,11-31. Out of these cases, imaging insights with IVUS and 

OCT were available in five and 38 cases, respectively. The other 
57 cases did not include intracoronary imaging assessment at the 
time of the ScT event. Table 5 and Table 6 summarise the imaging 
findings of the 17 early ScT cases and 26 late ScT cases assessed 
by IVUS and OCT. Representative examples of underlying pos-
sible mechanisms of ScT explored by OCT are summarised in 
Figure 1.

Acute and subacute scaffold thrombosis (Figure 2A)
MALAPPOSITION
In the current publications, malapposition (Figure 1A) was the 
most frequent imaging finding of early (acute and subacute) ScT. 
This could be induced by undersizing of the device, insufficient 
lesion preparation, inadequate post-dilatation, etc. Imaging-guided 
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scaffold implantation is relatively uncommon in current clini-
cal practice. Moreover, scaffold overexpansion has been inten-
sively prohibited in order to avoid acute disruption. Therefore, it 
is highly probable that such situations lead to insufficient scaf-
fold expansion in relation to the vessel, resulting in a higher rate 
of strut malapposition. Several reports have identified undersiz-
ing as a key factor for ST in both bare metal stents and drug-
eluting stents10, which can mean that malapposition is a key factor 
for ST. As with the reports on metallic stents, the undersizing of 
polymeric scaffolds probably leads to scaffold strut malapposition 
which is the underlying possible mechanical cause of ScT.

INCOMPLETE COVERAGE OF LESIONS (GEOGRAPHICAL 
MISS)
Incomplete lesion coverage (Figure 1B) was observed either 
because of mismatch of the predilated segment and the scaffolded 
segment or because of incomplete coverage of the thrombosed 
segment in acute coronary syndrome (ACS). Due to the inherent 
mechanical properties of polymeric devices, BVS require rigor-
ous lesion preparation, potentially translating to a higher risk of 
incomplete coverage of the injured segment, compared with direct 
stenting often applied with metallic stents. Incomplete coverage 
of thrombogenic plaque with altered flow dynamics due to the 

Table 4. Incidence of scaffold thrombosis in all-comer or miscellaneous populations.

Target Study design Study N
Acute ScT, 

N (%)

Subacute 
ScT, 

N (%)

Early ScT, 
N (%)

Late ScT  and 
very late ScT, 

N (%)

Refer-
ence

All-comer

All-comer Multicentre registry Abizaid et al, 
ABSORB EXTEND 

512 0 Def/prob  2 
(0.4%)

 Def/prob  2 
(0.4%)

Def/prob 2 (0.4%) 56

Single-centre registry BVS EXPAND 250 0 0 0 Def 1.4% 57

Single-centre registry Kraak et al, AMC 
single-centre 

135 0 Def 3 (2.2%) Def 3 (2.2%) Def 1 (0.7%)    7

Single-centre registry Azzalini et al 339 0 Def 4 (1.2%) Def 4 (1.2%) NA¶ 22

Two-centre registry Robaei et al* 100 0 0 Def 1 (1%) 0 58

Two-centre registry Jaguszewski et al 106 Def 1 (0.9%) Def 1 (0.9%) Def 2 (1.9%) NA¶ 59

Single-centre registry Costopoulos et al 92 0 0 0 NA¶ 60

Multicentre registry Capodanno et al, 
GHOST-EU registry

1,189 Def 5 (0.4%) Def 11 
(0.9%)

Def 16 (1.3%) Def 7 (0.8%)   4

Multicentre registry GABI-R 1,536 Def 7 (0.5%) Def 8 (0.5%) Def 15 (1.0%) NA¶ 20, 61

Multicentre registry Puricel S et al* 1,305 Def 10 
(0.8%)

Def 11 
(0.8%)

Def 21 (1.6%) LScT Def 11 
(0.8%) VLScT  
Def 10 (0.8%)

33

Multicentre registry REPARA 1,479 Def 0.3% NA Def 0.9% NA 62

Incidence of definite/probable ScT 7,043 0.40% 0.72% 1.08% 1.00%

Miscellaneous

Diabetes 
mellitus

PS matching 
comparison

Muramatsu et al 102 0 0 0 Def/prob 0.7% 
(1/136) Def 

0.7% (1/136)

63

Complex 
lesion 
(moderate/ 
severe 
calcified 
lesion, 
bifurcation, 
CTO)

Single-centre registry ASSURE registry 183 0 0 0 0 64

Chronic total 
occlusion

Single-centre registry CTO-ABSORB pilot 
study 

35 0 0 0 NA¶ 65

In-stent 
restenosis

Multicentre registry Moscarella et al 83 0 0 0 Def 1 (1.1%) 66

In-stent 
restenosis

Multicentre registry Ielasi et al 25 0 0 0 0 67

Bifurcation Single-centre registry Suárez de Lezo J  
et al

194 0 1 Def/prob 1 
(0.87%)

Def/prob  1 
(1.3%)

68

*Report includes 36 definite, 4 probable, and 2 possible ScT. ¶ Follow-up shorter than 1 year. Def: definite scaffold thrombosis; Def/prob: definite or 
probable scaffold thrombosis; LScT: late scaffold thrombosis; NA: not available; VLScT: very late scaffold thrombosis
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Figure 1. Representative examples of scaffold thrombosis underlying mechanisms explored by optical coherence tomography. In acute and 
subacute ScT, strut malapposition (A), incomplete lesion coverage (B, possible ruptured plaque [white arrow], uncovered thrombus [white 
asterisk]), and underdeployment (C) were the leading mechanical causes, followed by acute disruption (D) and overlap (E). In late and very 
late ScT, malapposition (A), late discontinuity (F, white arrowhead), and peri-strut low-intensity area (G) were the leading features, followed 
by uncovered struts (H) and neoatherosclerosis (I), mural thrombus (red asterisk) with highly attenuating area (white asterisk). Panel B 
reprinted with permission from Wolters Kluwer Health, Inc., Copyright (2015)14. Panel F reprinted with permission from Elsevier, Copyright 
(2015)18. Panel I reprinted with permission from Elsevier, Copyright (2015)44.

protrusion of polymeric struts into the lumen would synergistically 
contribute to the formation of thrombus17.

UNDERDEPLOYMENT/DEVICE-VESSEL MISMATCH
This may highlight the importance of lesion selection, optimal 
lesion preparation before bioresorbable scaffold implantation, and 

optimal scaffold sizing (Figure 1C). The implantation of a large 
Absorb scaffold in a relatively small vessel results in a rela-
tive underexpansion of the scaffold termed “underdeployment”, 
defined as the ratio of minimal scaffold area to the nominal area of 
the device deployed in vitro at a nominal pressure less than 0.80. 
Scaffold “underexpansion” is defined as the ratio of minimum 
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Table 5. Imaging findings of acute and subacute scaffold thrombosis.

Number
Indication 
for index 

PCI

Time 
(day)

ScT type 
Imaging 
modality

Malapposi-
tion

Incomplete 
lesion 

coverage

Underde-
ployment

Acute 
disruption

Overlap
Acute 
recoil

Other findings

1 SAP 1 Subacute ScT OCT – – – YES – – Calcified lesion, 
asymmetrical apposition

2 SAP 2 Subacute ScT OCT – – – – YES –

3 SAP 7 Subacute ScT OCT – – – – – – Unknown mechanical cause

4 ACS 0 Acute ScT OCT YES YES – – – –

5 UAP 0 Acute ScT OCT – – – – – – Calcified lesion

6 UAP 0 Acute ScT OCT YES – – – – –

7 UAP 7 Subacute ScT OCT – – – – – YES

8 UAP 16 Subacute ScT OCT – – – – – – Organised thrombus in 
distal scaffold

9 UAP 18 Subacute ScT IVUS – – – – – – Recent DAPT cessation / No 
specific mechanical cause

10 NSTEMI 8 Subacute ScT OCT – YES – – – Calcified lesion

11 STEMI 0 Acute ScT OCT – – – – – – Unknown mechanical cause

12 STEMI 0 Acute ScT IVUS YES – – – – Protrusion into lumen

13 STEMI 0 Acute ScT OCT YES – – – – –

14 STEMI 0 Acute ScT OCT YES YES – – – Calcified lesion

15 STEMI 4 Subacute ScT OCT – – – – – – Ticagrelor was stopped on 
day 3 after PCI / No specific 
mechanical cause

16 STEMI 6 Subacute ScT OCT YES – – – – –

17 STEMI 7 Subacute ScT OCT – – – – – – Unknown mechanical cause

Total number 4 3 2 1 1 1

ACS: acute coronary syndrome; IVUS: intravascular ultrasound; NSTEMI: non-ST-segment elevation myocardial infarction; OCT: optical coherence tomography; SAP: stable angina pectoris; 
ScT: scaffold thrombosis; STEMI: ST-segment elevation myocardial infarction; UAP: unstable angina pectoris; “–” means “NO”

scaffold area to the average reference lumen area less than 0.90. 
We need to use these two terms quite differently since these two 
conditions are completely dissimilar. The underdeployment of 
scaffolds could cause a high density of polymer in small vessels, 
which could be associated with an increased thrombogenicity and 
disturbance in the haemodynamic microenvironment around the 
struts32,33. Device oversizing has been associated with a higher risk 
of MACE at one-year follow-up after BVS implantation34.

ACUTE DISRUPTION
BVS pattern irregularity at baseline is considered as acute disrup-
tion of the BVS scaffold (Figure 1D)35. This irregularity ranged 
from local overhanging single struts shifted out of their expected 
pattern position during deployment, to complete pattern disrup-
tions possibly involving structural discontinuities. At the time 
of implantation, the bioresorption process does not influence the 
mechanical integrity of the scaffold at all, so that any disrupted 
struts observed immediately after the procedure are the conse-
quence of a mechanical disruption caused by extreme overexpan-
sion of the scaffold. The reported incidence of scaffold pattern 
irregularities (acute disruption) was 3.9-5.8%35. However, the 
degree of disruption might also be important. Complete structural 
disruption could lead to loss of scaffold integrity, malapposition of 
struts, acute recoil of the device, resulting in ScT.
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Figure 2. Imaging findings on scaffold thrombosis. Imaging findings on 
scaffold thrombosis in the acute/subacute (A) and late/very late (B) 
phases summarised in Table 5 and Table 6 are presented as bar graphs. 
The vertical axis shows the number of each finding observed in the 43 
case reports (acute and subacute: n=17; late and very late: n=26).
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Table 6. Imaging findings of late and very late scaffold thrombosis.

Num
ber

Indication for index 
PCI

Tim
e (day)

ScT type

Im
aging

M
alapposition

Late discontinuity

Peri-strut 
low-intensity area

Uncovered strut

Underdeploym
ent

Incom
plete lesion 

coverage

Recoil

Restenosis

Neoatherosclerosis

Bifurcation

Other findings

1 SAP 112 Late ScT OCT – – – – YES – – – – –

2 SAP 129 Late ScT OCT – – – YES – – – – – YES

3 SAP 161 Late ScT OCT YES YES – – YES – – – – –

4 SAP 263 Late ScT OCT – – YES – – – – – – – Neovessel

5 SAP 447 Very late ScT IVUS YES – – – YES – – – – –

6 SAP 480 Very late ScT IVUS – – – – – – YES – – –

7 SAP 540 Very late ScT OCT YES – – – – – – – – –

8 SAP 570 Very late ScT OCT YES – – – – – – – – –

9 SAP 570 Very late ScT OCT – YES – YES – – – – – –

10 SAP 675 Very late ScT OCT YES YES – – – – – – – –

11 SAP 1,320 Very late ScT OCT YES – – – – – – – – –

12 ACS 47 Late ScT OCT YES – – – – – – – – –

13 ACS 142 Late ScT OCT – – – – – YES – YES – –

14 ACS 371 Very late ScT OCT YES – – – – – – – – –

15 UAP 73 Late ScT OCT – – – – – – – – – – Unknown mechanical 
cause

16 UAP 602 Very late ScT IVUS – – – – YES YES – – – –

17 UAP 730 Very late ScT OCT – YES – – – – – – – –

18 NSTEMI 243 Late ScT OCT – YES YES – – – – – – –

19 NSTEMI 420 Very late ScT OCT – – – – – YES – – – –

20 NSTEMI 584 Very late ScT OCT – YES YES – – – YES – – –

21 NSTEMI 630 Very late ScT OCT – – – YES – – – – – –

22 STEMI 104 Late ScT OCT – – – – – – – YES YES – Neovessels, ruptured 
restenosis

23 STEMI 349 Late ScT OCT – – YES – – – YES – – –

24 STEMI 540 Very late ScT OCT – – – YES – – – – – –

25 STEMI 562 Very late ScT OCT YES YES YES – – – – – – – Asymmetrical 
apposition

26 STEMI 570 Very late ScT OCT – YES – – – – – – – –

Total number 9 8 5 4 4 3 3 2 1 1

ACS: acute coronary syndrome; IVUS: intravascular ultrasound; NSTEMI: non-ST-segment elevation myocardial infarction; OCT: optical coherence tomography; SAP: stable angina pectoris; 
ScT: scaffold thrombosis; STEMI: ST-segment elevation myocardial infarction; UAP: unstable angina pectoris; “-” means “NO”

OVERLAP
Overlapping scaffolds (Figure 1E) inherently create malapposed 
struts at the inner scaffold, which potentially cause ScT. In addi-
tion, the structural complexity of overhanging and stacked struts at 
overlapping segments could be a potential nidus of thrombus due 
to the blood flow disturbance and alteration of endothelial shear 
stress.

SUMMARY
ACS was the predominant presentation in patients in the publi-
cations with early ScT. Mechanical features of strut malapposi-
tion, incomplete lesion coverage, and scaffold underdeployment 

could cause disturbance of laminar blood flow and thus alteration 
of endothelial shear stress, which synergistically induce early ScT 
with the inflammatory microenvironment in ACS lesions as dis-
cussed below.

Late and very late scaffold thrombosis (Figure 2B)
MALAPPOSITION
As observed in early ScT, strut malapposition was frequently 
observed in cases with late and very late ScT (Figure 1A). In 
addition to persistent incomplete strut apposition, recoil of scaf-
fold, positive remodelling of the vessel (late acquired incomplete 
strut apposition), evagination, and late discontinuity35 could result 
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in malapposition in the late phase. Struts at the ostium of a side 
branch can also be recognised as malapposed struts in a mechani-
cal perspective.

LATE DISCONTINUITY
So-called late discontinuity is the programmed phenomenon in the 
bioresorption process of the polymeric device (Figure 1F). The inci-
dence of late discontinuity was reported to be 42% in the ABSORB 
cohort B trial35. Six months after device implantation, the poly-
meric scaffold starts losing its mechanical integrity which can lead 
to expected late discontinuity. Theoretically, this is a benign change 
during the bioresorption process and does not cause any problems 
if struts are well covered. However, in cases where struts are not 
covered by neointima and late discontinuity allows protrusion of 
part of the struts into the lumen and brings thrombogenic proteogly-
can into contact with blood, late discontinuity could be a malignant 
potential cause of ScT. “Uncovered” late discontinuity could be crit-
ical, whereas late discontinuity itself would not be a culprit of ScT. 
Therefore, enhancement of neointimal coverage would be a key to 
prevent ScT associated with late discontinuity. Prevention of malap-
position by either a BVS-specific implantation strategy (described 
later) or OCT-guided implantation, and new-generation BVS with 
thinner struts could contribute to early neointimal coverage and 
a consequent reduction of the incidence of late and very late ScT.

PERI-STRUT LOW-INTENSITY AREA
Peri-strut low-intensity areas were defined as homogenously appear-
ing, non-signal-attenuating zones around struts of lower intensity 
than the surrounding tissue (Figure 1G). Although the causes and 
consequences of peri-strut low-intensity areas remain uncertain in 
BVS, a trial in 26 coronary swine segments treated with everoli-
mus-eluting DES demonstrated a direct correlation between the 
degree of peri-strut low-intensity area and peri-strut inflammation 
at histology36. Otsuka et al compared the vascular responses to the 
implantation of BVS versus a metallic everolimus-eluting cobalt-
chromium stent in non-atherosclerotic swine37. Although there was 
no inflammation at one month for both devices, the inflammation 
scores were greater for the BVS at six to 36 months. Cuculi et al 
reported that the predominant OCT finding in late and very late ScT 
was peri-strut low-intensity area, which might be the correlate of 
vascular oedema, thus enhancing vascular vulnerability. However, 
the direct association of the peri-strut low-intensity area pattern with 
the occurrence of late and very late ScT is still unclear and needs to 
be evaluated in future studies.

UNDERDEPLOYMENT/ASYMMETRICAL APPOSITION/RECOIL 
RESTENOSIS
Lumen narrowing at the time of late and very late ScT was one of 
the predominant features of late and very late ScT. The mechanism 
of the restenosis cannot be precisely determined in the absence of 
serial intravascular imaging and visualisation of the external elas-
tic membrane. Restenosis in the absence of significant neointimal 
proliferation can be explained by chronic recoil, plaque growth, or 

shrinkage of the external elastic membrane. Although neointimal 
hyperplasia was the cause of restenosis with metallic DES, reste-
nosis in the absence of significant neointimal proliferation may 
occur late during the BVS bioresorption process. Careful exami-
nation with serial OCT assessments in future studies is warranted.

UNCOVERED STRUTS
A lack of strut coverage caused by delayed healing has been iden-
tified as a possible mechanism of late/very late ST after implanta-
tion of early-generation DES. It has also been observed that delayed 
neointimal coverage of BVS is a possible mechanical cause of late 
and very late ScT (Figure 1H). The one-year follow-up OCT study 
of BVS and EES demonstrated similar rates of uncovered struts 
(5.3% EES vs. 4.5% BVS; p=0.11)38. However, when the neointi-
mal coverage of polymeric struts is delayed, the biodegraded prod-
ucts of polymeric struts can be an additional enhancer of ScT. The 
hydrolysis of a polymeric strut starts immediately after the device 
comes into contact with water. Afterwards, the polymer is progres-
sively replaced by a malleable provisional matrix of proteoglycan 
which reportedly has a higher thrombogenicity than the polymeric 
material itself39. The exposed proteoglycan without neointimal cov-
erage could be a hazardous cause of ScT.

OVERLAP
In the late phase, an overlapping scaffold could inherently create 
two potential mechanical causes, malapposition and incomplete 
coverage. Theoretically, the struts of the inner device at the over-
lap site cannot be apposed to the vessel wall. In a juvenile porcine 
model, overlapping BVS scaffolds showed more delay in tissue 
coverage than non-overlapping scaffolds. It is likely that the larger 
strut thickness of the stack-like BVS scaffolds (approximately 300 
μm) in overlapping segments led to a greater neointimal response 
compared with that in the non-overlapping segments. Delayed 
coverage of overlapped struts presumably results from that greater 
neointimal response which is long-lasting.

NEOATHEROSCLEROSIS
Neoatherosclerosis has been identified as a mechanism related to 
very late ST in intracoronary imaging cohort studies. Macrophage 
accumulations are considered the earliest manifestations of neo-
atherosclerosis. In some case reports, neoatherosclerosis was 
observed in the scaffolded vessels, but not as the direct cause of 
ScT (Figure 1I). No obvious correlation between neoatherosclero-
sis and thrombus formation was observed except for one case from 
Cuculi et al25. In that case, ruptured plaque was identified by OCT 
as a cause of ScT. Theoretically, the plaque sealing effect of BVS 
was expected to reduce neoatherosclerosis. Although it might be 
a rare event, neoatherosclerosis could be considered as a potential 
cause of ScT after BVS implantation.

SUMMARY
In line with the findings of early ScT, strut malapposition was 
the most frequently observed finding of late and very late ScT. 
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In contrast to early ScT, strut malapposition was more frequently 
observed in patients with stable lesions than in those with ACS. 
In ACS lesions, peri-strut low-intensity area and late discontinu-
ity are the predominant imaging findings (Table 6), indicating that 
the inflammatory microenvironment around the ACS lesions could 
play an important role in late and very late ScT. The imaging find-
ings in the late phase, however, should be interpreted with caution 
due to the “snapshot” nature of the imaging assessment. All the 
potential mechanical causes of ScT in the late phase are putative 
in the absence of serial imaging assessments.

Pathophysiology of scaffold thrombosis
All the possible mechanical causes of ScT in the early (acute and 
subacute) and late (late and very late) phases can translate into 
three fundamental pathophysiological mechanisms: 1) the distur-
bance of laminar blood flow and thus the alteration of endothelial 
shear stress, 2) high thrombogenicity of the biodegradation prod-
ucts, and 3) an inflammatory milieu around the polymeric struts.

ALTERATION OF ENDOTHELIAL SHEAR STRESS
Malapposition, acute disruption, underdeployment, device-vessel 
mismatch, incomplete coverage of lesion (geographical miss), 
overlap, and late discontinuity all cause the disturbance of lami-
nar blood flow. In a flow simulation of a microenvironment com-
puted by OCT/angiography fusion in a human coronary artery, the 
relatively high endothelial shear stress on top of the strut and low 
endothelial shear stress measured behind and between the BVS 
struts were demonstrated40. The larger alteration of shear stress 
around the malapposed struts than around the apposed/embedded 
struts was also demonstrated by computational fluid dynamic sim-
ulation32. Low endothelial shear stress attenuates the endothelial 
expression of nitric oxide, prostacyclin I2, and tissue plasminogen 
activator, shifting towards a prothrombotic state. Additionally, low 
endothelial shear stress may promote ScT by inhibiting endothelial 
cell proliferation and retarding re-endothelialisation of the arterial 
and strut surface. Endothelial shear stress peaks over the strut sur-
face edges and activates platelets that release thromboxane A2 and 
adenosine diphosphate, two potent mediators of platelet activation. 
Erythrocytes exposed to high endothelial shear stress also release 
adenosine diphosphate. Activated platelets enter flow separation 
zones downstream to the struts and reach high concentrations due 
to delayed flow in conjunction with low endothelial shear stress, 
resulting in triggering of the coagulation cascade. This shear stress 
disturbance could be a nidus for thrombus in the microenviron-
ment around struts.

THROMBOGENICITY OF BIODEGRADATION PRODUCTS
In addition to flow disturbance, high thrombogenicity of biodeg-
radation products may play a critical role in thrombus formation, 
especially in the late phase. The thrombogenicity of a malleable 
provisional matrix of proteoglycan during the biodegradation 
process of polymer is higher than that of the polymeric material 
itself39. Farb et al described 50 consecutive cases of sudden cardiac 

death attributable to coronary thrombosis, in which 22 had super-
ficial erosion of a proteoglycan-smooth muscle cell-rich plaque 
without plaque rupture39. Heterogeneous endothelialisation of the 
scaffold struts or failure of degradation due to incomplete integra-
tion into the vascular wall could cause exposure of biodegradation 
products into the blood flow, resulting in a high risk of thrombus 
formation. Moreover, biodegradation products of polymer during 
the bioresorption process and minimal inflammatory milieu (dis-
cussed in the next paragraph) could synergistically induce ScT, 
especially in the late phase.

INFLAMMATORY MILIEU
Arterial thrombosis in atherosclerotic lesions is prone to occur in 
the presence of activated plaque-derived tissue factor, and has his-
torically been proposed to be the predominant activator of coag-
ulation cascade. An inherent role of tissue factor derived from 
blood-borne inflammatory cells in the context of arterial thrombo-
sis and its specific contribution to enhanced coagulation has been 
shown in an experimental study on human leukocytes. Human 
blood-derived neutrophils and monocytes have been shown to be 
an important source of tissue factor to initiate coagulation path-
ways. In an ex vivo porcine arteriovenous shunt model, Koppara et 
al demonstrated increased adherence of acute inflammatory cells 
in thick-strut BVS as compared with thin-strut EES in the acute 
phase (<28 days)41.

In early ScT, strut malapposition combined with ACS is the 
most predominant feature of ScT, whereas in late and very late 
ScT peri-strut low-intensity area and late discontinuity rather than 
malapposition are more frequently observed in ACS patients. 
Although late discontinuity itself is a programmed benign pheno-
menon in the biodegradation process, the late discontinuity 
observed in ScT cases could translate into the intraluminal mass 
which hinders the laminar flow and results in the alteration of 
endothelial shear stress. Pathophysiologically, this is a condition 
similar to strut malapposition. The inflammatory milieu around 
the polymeric struts observed in the acute phase of ACS and dur-
ing the biodegradation process after device implantation (six to 
36 months) could induce a more thrombogenic status. The patho-
physiological meaning of peri-strut low-intensity area still remains 
unclear and needs further investigation.

Inflammation associated with BVS might be related to poly-
mer resorption42, which suggests that the minimal inflamma-
tion lasts until the complete bioresorption (<36 months). After 
complete bioresorption, the inflammatory response would theo-
retically disappear and the coronary vessel would return to its 
original status.

Clinical implications
A recently published study demonstrated that decreased left ven-
tricular ejection fraction and ostial lesions were independent 
predictors of ScT in an all-comer multicentre European cohort 
(n=1,305)33. Implantation of metallic stents in patients with 
decreased left ventricular function, treatment of ostial and/or type 
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B2/C lesions, and interruption of DAPT have all been previously 
reported to be associated with ScT. Recent data on the bioresorb-
able scaffold were in line with the data on metallic stents. Of note, 
a BVS-specific implantation strategy significantly reduced the rate 
of ScT in the cohort. When a BVS-specific implantation strategy 
was implemented, 12-month ScT rates fell from 3.3% to 1.0%, 
an effect that remained significant when adjusted for multivaria-
ble propensity score (p=0.012; hazard ratio: 0.19; 95% confidence 
interval: 0.05 to 0.70). The BVS-specific implantation strategy can 
be summarised as follows33:
1. Predilatation with a non-compliant balloon up to the same size 

as the reference vessel diameter.
2. BVS implantation only in case of full expansion of the non-

compliant percutaneous transcatheter coronary angioplasty bal-
loon as demonstrated by angiography in two orthogonal planes.

3. Implantation of a BVS of the same size as the reference vessel 
diameter at 10 to 12 atm.

4. Post-dilatation with non-compliant balloons up to a maximum 
of 0.5 mm larger at 14 to 16 atm.
The possible mechanical causes described in this article are the-

oretically treatable and avoidable by the BVS-specific implanta-
tion technique. Operators need to stay on top of the advantages 
and limitations of bioresorbable scaffolds, and to follow strictly 
the specific strategy recommended in the expert review33,43. In 
addition, we can expect new-generation BVS with thinner struts 
to lower the risks of scaffold thrombosis associated with a number 
of the mechanical causes described in the current article. Thinner 
struts could theoretically contribute to less flow disturbance and 
earlier neointimal coverage compared to the thick struts of the cur-
rent BVS.

Limitations
This review article presents some limitations. We focused on coro-
nary imaging insights from current publications, resulting in an 
unavoidable selection bias and publication bias. The true rela-
tive and absolute frequency of each of these potential mecha-
nisms remains unknown. Although the present article reviews 
each interpretation of the mechanical cause in each report, some 
causes might have been affected or created by the procedure of 
thrombectomy, IVUS or OCT: malapposition, discontinuity, and 
lack of coverage of struts might have been iatrogenically created 
by the insertion of thrombectomy, IVUS or OCT catheters. The 
“snapshot” nature of the intracoronary imaging investigations 
precludes any dynamic interpretation of the ongoing mechanical 
cause of ScT. All the possible mechanical causes, especially in 
the late phase, are hypothetical in the absence of serial imaging 
assessments. Lastly, the current review only provides insights into 
the Absorb BVS from Abbott Vascular. The findings might be dif-
ferent with other bioresorbable scaffolds.

Conclusions
Malapposition, incomplete lesion coverage, and underdeployment 
are frequently observed in cases of early ScT, whereas, in late 
ScT, malapposition, late discontinuity and peri-strut low-inten-
sity area are the predominant features of intracoronary imaging. 
The mechanical causes raised in this article, however, could the-
oretically be treatable and avoidable by using the BVS-specific 
implantation technique. New-generation BVS with thinner struts 
can also be expected to lower the risks of scaffold thrombosis 
associated with a number of the mechanical causes described in 
the current article. Future trials focusing on the imaging features 
are warranted.
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Impact on daily practice
The present systematic review of published case reports of 
bioresorbable scaffold thrombosis (ScT) with intracoronary 
imaging demonstrated that malapposition, incomplete lesion 
coverage, and underdeployment are frequently associated with 
early ScT, whereas, in late/very late ScT, malapposition, late 
discontinuity and peri-strut low-intensity area are the predomi-
nant features of intracoronary imaging. Early and late/very late 
ScT could have different mechanical causes. To minimise the 
potential risk of early and late/very late ScT, it is important that 
operators try to avoid such abnormalities at the time of implan-
tation. The impact of a BVS-specific implantation technique on 
the incidence of ScT still needs to be investigated in future pro-
spective trials.
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