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BACKGROUND: Renal denervation (RDN) is a  guideline-recommended treatment to reduce blood pressure (BP) in 
patients with uncontrolled hypertension. However, it is unclear if there are patient characteristics that are predictive 
of greater BP reduction. Baseline systolic blood pressure (SBP) has consistently been identified as an indicator of BP 
reduction after RDN. 

AIMS: Our study aimed to quantify the expected SBP change after RDN based on baseline SBP. 

METHODS: Patients undergoing radiofrequency RDN were pooled from multiple clinical studies, including SPYRAL 
First-In-Human (n=50), SYMPLICITY HTN-3 (n=364), SYMPLICITY HTN-Japan (n=22), SPYRAL HTN 
ON-MED (n=206), and the Global SYMPLICITY Registry DEFINE (n=2,735). Office and 24-hour ambulatory BP 
were measured at baseline and 6  months. Linear regression modelled patient-level 6-month SBP changes against 
baseline SBP.

RESULTS: The pooled cohort (N=3,377) had a  mean age of 60±12  years, and 41% were female. Baseline office 
SBP (OSBP) and 24h ambulatory SBP (ASBP) were 171.8±20.5  mmHg and 155.9±17.3  mmHg, respectively. At 
6 months, OSBP and 24h ASBP decreased by 16.3±24.0 and 7.5±16.7 mmHg, respectively. Patients were prescribed 
4.4±1.5 antihypertensive drug classes at baseline and 4.3±1.5 at 6 months (p<0.0001). Higher baseline SBP correlated 
with greater SBP reductions (p<0.0001; r2=0.21 for OSBP; r2=0.13 for ASBP). Baseline OSBP of 150, 160, 170, and 
180 mmHg were associated with 6-month reductions of 4.2, 9.8, 15.4, and 21.0 mmHg, respectively. 

CONCLUSIONS: Baseline SBP was associated with 6-month SBP reductions after RDN in hypertensive patients. 
This relationship provides guidance for shared patient-clinician decision-making about what BP change to expect 
following radiofrequency RDN based on baseline SBP alone.
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Several position papers and guidelines recommend 
renal denervation (RDN) as an adjunctive treatment 
approach in patients with uncontrolled hypertension1,2. 

In November 2023, the Symplicity Spyral radiofrequency 
(RF) RDN system (Medtronic) received approval from the 
U.S. Food and Drug Administration (FDA) as an adjunctive 
blood pressure (BP)-lowering treatment for patients 
with hypertension whose BP remains above treatment 
goals despite lifestyle modifications and antihypertensive 
pharmacotherapy. BP reduction after RDN may be associated 
with a reduction in cardiovascular events3,4, and model-based 
projections found significant reductions in major adverse 
cardiovascular events and low numbers needed to treat 
across 3  years of follow-up in a  hypertensive population 
treated with RF RDN5.

However, there is limited guidance on how clinicians can 
effectively assess individual response after RDN and in turn, 
inform shared decision-making with patients. Across multiple 
studies in different patient populations using different RDN 
techniques, the most consistent feature correlating with 
significant BP reductions was higher baseline BP6-9. However, 
the observed relationship between baseline BP and subsequent 
BP reduction has also been observed in pharmacological 
studies and is not limited to “blood pressure per se”10,11.
This non-linear “law of initial value” was first described by 
Wilder10 and should be considered in addition to regression to 
the mean10,11 and visit-to-visit BP variability12. Wilder’s law of 
initial value states that the response to a stimulus is related to 
the prestimulus level and is independent of both regression to 
the mean and BP variability11. Disentangling these potential 
effects remains a  significant challenge to understanding the 
relationship between baseline BP and BP reduction after RF 
RDN, especially when pharmacotherapy alone has failed to 
adequately control hypertension. 

In this post hoc analysis of pooled clinical trials of RF 
RDN, we attempted to exploit this biological phenomenon 
of baseline BP being indicative of subsequent BP change after 
a therapeutic intervention and to delineate the probabilities of 
expected BP change after RDN based on baseline BP alone.

Methods
Patients with baseline systolic blood pressure (SBP) 
≥140 mmHg who underwent RF RDN and were prescribed 
antihypertensive medications at baseline were pooled from the 
following SYMPLICITY and SPYRAL global clinical trials 
(N=3,377), either from multiple randomised, sham-controlled 
trials such as SYMPLICITY HTN-313 (n=364; ≥3 prescribed 
antihypertensive [AH] medications); SPYRAL HTN-ON 
MED14 (n=206; 1-3 AH medications); SYMPLICITY HTN-
Japan15, a randomised (but not sham-controlled) study (n=22; 
≥3 AH drugs); SPYRAL First-In-Human16 (FIH), a feasibility 
study (n=50; ≥3 prescribed AH drugs); and the Global 
SYMPLICITY Registry (GSR) DEFINE17, an all-comers 
study reflecting a  real-world population (as of March 2023, 

n=2,735; including patients with baseline SBP ≥140  mmHg 
who were prescribed any number of AH drugs). Patients 
with baseline SBP <140  mmHg were not included in this 
analysis as patients in this category would have been limited 
to a select few from the GSR DEFINE study, and could 
have potentially biased results2. Details of the included study 
designs have been published previously13-17. The SPYRAL 
HTN-OFF MED Pivotal Trial was not included because the 
study design required patients to discontinue AH medications 
before randomisation and permitted their reintroduction after 
3  months, potentially confounding the 6-month results. At 
baseline, patient demographic and clinical characteristics were 
assessed, and office and 24-hour ambulatory SBP (ASBP) 
were measured according to guideline recommendations. 
Follow-up office and 24-hour ambulatory SBP were measured 
6 months after RDN. 

PROCEDURES 
Procedural details have been published previously14,18-20. 
Briefly, RF RDN was performed using the Symplicity G3 
RDN RF generator with either the Symplicity Flex catheter 
or the Symplicity Spyral RDN multielectrode catheter (all 
Medtronic), the latter allowing circumferential ablation 
treatments of all renal arteries and branch vessels between 3 
and 8 mm in diameter. Cases were performed by experienced 
proceduralists and, in the case of randomised controlled 
trials, were proctored according to predetermined treatment 
plans. Angiography was performed throughout the procedure 
to verify anatomy and catheter placement.

STATISTICAL ANALYSIS 
Statistical analyses were performed with SAS for Windows 
9.4 (SAS Institute). Linear regression analyses were 
performed for office and 24-hour SBP to assess the 
correlation between baseline and 6-month change in SBP 
(SBP change=intercept+slope*baseline SBP). The resulting 
linear regression relationships were used to estimate (1) 
patient-level expected 6-month changes in SBP after RF 

Impact on daily practice
The findings from this pooled analysis of 3,377  patients 
indicate that higher baseline systolic blood pressure (SBP) 
is associated with greater SBP reduction at 6  months 
following radiofrequency renal denervation (RDN). This 
insight is important for interventionalists, as it provides 
a  straightforward metric – baseline SBP – that can help 
estimate the potential benefits of RDN for patients. While 
the exact blood pressure (BP) response cannot be predicted, 
understanding the likelihood of significant BP reductions can 
enhance shared decision-making processes between clinicians 
and patients. This data-driven approach further supports the 
use of RDN for patients with uncontrolled hypertension. 

Abbreviations
AH	 antihypertensive

ASBP	 ambulatory systolic blood pressure

BP	 blood pressure

RDN	 renal denervation

RF	 radiofrequency 

SBP	 systolic blood pressure
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RDN based on baseline SBP (increments of 10  mmHg) 
with 50%, 75%, and 90% confidence intervals and (2) the 
probabilities of BP change in 20  mmHg increments based 
on baseline SBP. The probabilities were determined using the 
model-predicted BP changes and standard errors for different 
baseline BP values to calculate the area under the regression 
curve (Central illustration). Categorical measures are expressed 
as percentages, and continuous measures are expressed as 
mean±standard deviation.

Results
The baseline demographic and clinical characteristics of 
the pooled cohort are summarised in Table 1. Patients were 
60±12 years old, 41.0% female, with a body mass index of 
31.3±5.9 kg/m2; 37.7% had type 2 diabetes mellitus, 8.4% 
had a  history of myocardial infarction, and the estimated 
glomerular filtration rate was 76.5±24.1 mL/min/1.73 m². 
Baseline office SBP (OSBP) and 24-hour ASBP were 
171.8±20.5  mmHg and 155.9±17.3  mmHg, respectively. 
Patients were prescribed 4.4±1.5 antihypertensive medications 
at baseline (Table 1). Six months after RF RDN, OSBP and 
24-hour ASBP decreased by 16.3±24.0 and 7.5±16.7 mmHg, 
respectively. At 6-month follow-up, patients were prescribed 
4.3±1.5 antihypertensive medications (p<0.0001 compared to 
baseline). 

Linear regression analysis of the relationship between 
baseline OSBP and 6-month change in OSBP showed that 
each 10 mmHg increase in baseline OSBP ≥140 mmHg was 
associated with a 5.6 mmHg (r²=0.21; p<0.0001) reduction 
in OSBP. Similarly, each 10 mmHg increase in baseline ASBP 
≥140  mmHg was associated with a  4.3  mmHg (r²=0.13; 
p<0.0001) reduction in ASBP at 6  months. Baseline OSBP 
of 150, 160, 170, and 180  mmHg were associated with 
6-month reductions of 4.2, 9.8, 15.4, and 21.0 mmHg, 
respectively. 

The expected 6-month reductions in both office and 
24-hour ambulatory SBP varied substantially from the 
baseline values of 140 mmHg to 180 mmHg (Figure 1). The 
probabilities of expected SBP changes based on the separate 
linear regression models of baseline OSBP and ASBP were 
translated into a  heat map, with higher probabilities in 
darker shades of green (Figure 2). For example, a patient with 
a baseline OSBP of 170 mmHg has a 35% probability of an 
OSBP change between 0 and –20 mmHg, a 29% probability 
of a  change between –20 and –40  mmHg, etc. (Figure 2A). 
For baseline OSBP between 150 and 170 mmHg, the greatest 
probability of expected OSBP reduction is in the range of 
0 to –20  mmHg (probabilities of 35% to 36%), and for 
baseline OSBP between 180  mmHg and 210  mmHg, the 
greatest probability of expected OSBP reduction is in the 

EuroIntervention	 Central Illustration

Blood pressure changes at 6 months following RF RDN based on baseline office SBP alone. 
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range of –20 mmHg to –40 mmHg (probabilities of 33% to 
36%). A 12-month linear regression analysis revealed similar 
results to the 6-month analysis (Supplementary Figure 1), and 
is consistent with a  recently published linear mixed model 
investigating long-term reductions after RDN21. 

Discussion
The present analysis of a pooled database of 3,377 patients 
with uncontrolled office or 24-hour ambulatory SBP, despite 
treatment with antihypertensive medications, showed that 
higher baseline SBP was associated with greater SBP reduction 
at 6 months after RF RDN. However, it explained only 21% 
of the resulting BP reduction after RDN (r2=0.21 for OSBP). 
Despite strong statistical significance, linear correlations 
were modest (r² values<0.5), suggesting that additional 
factors also influence SBP change after RDN. Another factor 
influencing correlations is likely visit-to-visit BP variability22. 
Therefore, accurate individual “prediction” of BP response 
appears to be impractical. However, the present analysis does 
facilitate estimation of the relative likelihood of different 
BP reductions. For example, a patient with a baseline office 
SBP of 170 mmHg has a 76.5% probability of experiencing 
a  BP reduction within 6  months after RDN. Similarly, 
a  patient with a  baseline SBP of 190  mmHg has an 88.7% 
chance of experiencing a BP reduction and a 62.2% chance 
of experiencing a BP reduction greater than 20 mmHg. This 
data-driven relationship between baseline BP and BP change 
after RF RDN could help both clinicians and patients better 
understand the potential benefits on an individual basis, and 

thus could provide better guidance in the shared decision-
making process currently recommended by hypertension 
guidelines and RDN position statements1,2,23.

RDN in patients with uncontrolled hypertension is 
recommended by international guidelines for the treatment of 
arterial hypertension1,2. In clinical practice, there is a great need 
to better understand the expected BP change after an invasive 
therapy such as RDN, depending on the individual’s clinical 
characteristics. Currently, there is no single characteristic 
that accurately predicts the best BP response to RDN in all 
patients and that has been prospectively validated. This may 
reflect the lack of a single, uniform, non-arbitrary definition 
of “response” to RDN22. Several associations have been 
proposed, such as renal artery anatomy; BP variability; clinical 
and demographic conditions such as sex, presence of diabetes 
or obesity; and pathophysiological factors such as skin sodium 
levels, plasma renin activity, and vascular stiffness (invasive 
pulse wave velocity and aortic distensibility). However, each 
of these associations do not have a  high enough accuracy 
to be used as a  guide to predict BP reduction after RDN in 
clinical practice. Similarly, the genetic profile of patients with 
resistant hypertension was not associated with 24-hour BP 
reduction, which does not support the use of a genetic score 
to identify potential responders to RDN24. 

However, several studies have consistently shown that 
pretreatment or baseline BP has the greatest impact on the 
magnitude of BP reduction after RDN6-9. Baseline BP is one 
of the easiest patient data points to collect in a  real-world 
clinical setting. Our large, pooled database of RF RDN trials 
allowed us to show an expected range and mean BP change 
after RDN based on this single characteristic. A simple metric 
such as this may be useful as a  guideline for primary care 
physicians and referring physicians, as it does not require 
complex and expensive investigations before referring 
patients to a  specialist hypertension clinic for consideration 
of RDN. For patients at or near the threshold for guideline-
recommended BP values for RDN treatment, a  case-by-case 

Table 1. Pooled cohort baseline characteristics.

Baseline characteristics 
Pooled cohort 

(N=3,377)

Age, yrs 59.8±11.8 (3,377)

Male 59.0 (1,994/3,377)

Type 2 diabetes mellitus 37.7 (1,269/3,365)

Body mass index, kg/m2 31.3±5.9 (3,353)

Estimated glomerular filtration rate, mL/
min/1.73 m2 76.5±24.1 (3,220)

Prior myocardial infarction 8.4 (255/3,036)

History of heart failure 10.7 (326/3,036)

History of sleep apnoea 21.3 (675/3,169)

History of atrial fibrillation 11.0 (371/3,360)

History of smoking 35.0 (1,180/3,374)

No. of antihypertensive drug classes 
prescribed 4.4±1.5 (3,113)

Number of ablations 20.8±17.7 (3,285)

Procedure duration, mins 83.9±43.8 (3,199)

Office SBP, mmHg 171.8±20.5 (3,377)

Office heart rate, bpm 70.9±13.2 (3,224)

Office pulse pressure, mmHg 78.4±19.4 (3,377)

24-hour ambulatory SBP, mmHg 155.9±17.3 (2,529)

24-hour heart rate, bpm 69.6±11.8 (2,194)

24-hour pulse pressure, mmHg 67.5±14.8 (2,529)

Data are mean±SD (N) or % (n/N). SBP: systolic blood pressure; 
SD: standard deviation
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Figure 1. Expected change in 24-hour ambulatory systolic 
BP at 6 months after radiofrequency RDN. The red line is 
the linear regression line. Different shades of blue around the 
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approach is recommended, including incorporating patient 
preference as part of the shared decision-making process. 
Ultimately, RDN should be considered for patients at higher 
cardiovascular risk, including those with higher BP in whom 
target BP values at or below 130/80 mmHg are recommended. 
Indeed, further investigation is needed to identify other 
specific patient characteristics, in addition to baseline BP, that 
contribute to better BP predictability after RDN.

Limitations
BP changes at 6 and 12 months were evaluated and any 
correlation beyond 12 months was not evaluated. Analysis 
of BP reduction up to 36 months showed sustained and even 
amplified BP reductions after RF RDN, suggesting that the 
estimated expected BP reductions underestimate the long-
term BP reductions after RF RDN5. The SPYRAL HTN-
OFF MED study was not pooled in this study because the 
antihypertensive drug protocol differed significantly from 
the other pooled studies, due to a  permitted uptitration of 
medications between 3 and 6 months. Not all patients were 
on the same antihypertensive drug regimen, and medication 
adherence was not tested for a  large proportion of patients 
included in this study. In addition, where medication testing 
was available, many patients did not adhere to their prescribed 
medications throughout the follow-up period20, which may 
have influenced BP changes. This analysis pooled studies using 
different radiofrequency devices (first-generation Symplicity 
Flex and next-generation Symplicity Spyral catheters). Other 
variables not tested in this analysis may play an important 
role in SBP reduction after RF RDN.

Conclusions
In patients with uncontrolled hypertension, those with higher 
baseline office and 24-hour ambulatory SBP can expect 
greater SBP reductions after RF RDN at 6  months. Using 

baseline SBP as a guide for expected BP reduction after RDN 
may be useful in clinical practice and may serve as an aid in 
shared decision-making for RDN. Further research is needed 
to identify the best candidates for RDN.
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Supplementary data
Supplementary Figure 1. Expected systolic BP change and 
probability heat maps at 12 months after radiofrequency RDN.
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Supplementary data 

Supplementary Figure 1. Expected systolic BP change and probability heat maps at 12 months 

after radiofrequency RDN. 

In A and B, the red line is the linear regression line. Different shades of grey around the linear 

regression line represent different confidence intervals. A) Office SBP, B) 24-h ambulatory SBP. 

In C and D, the darker green shades represent higher probabilities, and lighter green shades 

represent lower probabilities of the expected BP change range. The red line in each table separate 

increase and decrease in SBP change from baseline. C) Office SBP, D) 24-h ambulatory SBP. 

ASBP=ambulatory systolic blood pressure; OSBP=office systolic blood pressure; RF RDN= 

radiofrequency renal denervation; SBP=systolic blood pressure. 


