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Introduction
The statistical method used for analysing a clinical outcome is 

mainly determined by the measurement type of the outcome varia-

ble. For example, a dichotomous outcome such as “restenosis after 

6 months” or “successful intervention” is analysed with a method 

that is different from that which would be used to analyse a con-

tinuous outcome such as “minimum lumen diameter” or “percent-

age of restenosis”. In this paper we will focus on the situation in 

which there is a continuous outcome.

An appropriate method to analyse a continuous outcome is 

(under certain conditions) linear regression analysis. This method 

enables using all information embedded in the observed values of 

the outcome and investigating the relationships between this out-

come and other continuous and categorical variables, the so-called 

explanatory variables. The effects of these explanatory variables 

might be studied one at a time (simple regression) or simultane-

ously (multiple regression). The inclusion of several explanatory 

variables, as in a multiple regression, can also be used to cor-

rect for confounders (variables related to both the outcome and 

the explanatory variable of interest, e.g., treatment) in order to 

avoid biased results. When other variables explain a considerable 

part of the variation in the outcome, the effect of the explanatory 

variable of interest might only be detectable after adjustment for 

these covariates. Besides this, regression analysis can be used to 

develop a prediction model for the outcome.

In this paper we will discuss some aspects of linear regression 

analysis. A more detailed explanation and instructions on how to 

apply the methods using SPSS or SAS are given in the Online 

Appendix. Since terminology concerning linear regression (and 

statistics in general) used in the literature, handbooks and statisti-

cal software is not consistent, an overview of some terms can also 

be found in the Online Appendix.

Description of example data
The data used in the examples in this paper come from the 

LEADERS study1. In this study 1,700 patients with one or more 

coronary artery stenoses >50% in a native coronary artery or 

a saphenous bypass graft were randomised to treatment with 

either biolimus-eluting stents (BES) with biodegradable poly-

mer or sirolimus-eluting stents (SES) with durable polymer. One 

fourth of the study group was randomly assigned (1:3 allocation) 

to undergo follow-up angiography at nine months. The LEADERS 

study was designed to investigate non-inferiority of BES com-

pared to SES regarding the primary composite endpoint of cardiac 
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Linear regression to analyse a continuous outcome

death, myocardial infarction and clinically indicated target vessel 

revascularisation within nine months.

In this paper we will focus on a continuous outcome, namely 

the minimum lumen diameter (MLD) in the stented segment, 

measured at the follow-up visit nine months after the intervention. 

A protective effect of high-density lipoprotein cholesterol (HDL) 

on coronary heart disease has already been established since the 

late 1970s2. We will deal with investigating the relation between 

the explanatory variable HDL, measured at baseline, and mini-

mum lumen diameter (MLD), measured after nine months. We 

selected patients with both nine-month follow-up measurement of 

MLD and baseline HDL available, and will only use the measure-

ment on one stent for these patients (n=243). The genetic char-

acteristic (variable GENTYPE), used in example models in the 

Online Appendix, does not reflect real data, but is generated to 

provide a useful example.

Descriptive statistics of the data are given in Table 1.

Research questions related to linear regression
When considering the relation between one continuous explana-

tory variable (HDL) and the outcome (MLD), some questions 

which could be addressed include the following:

– If patient A has a higher HDL than patient B, can we expect the 

MLD of patient A to be higher than the MLD of patient B?

– If so, how much higher is (the expected) MLD if HDL is 

1 mmol/l higher?

– If we know the HDL of a patient, which value of MLD can we 

expect?

– How wide is the confidence interval around this expected MLD?

– In case there is a relationship between HDL and MLD, is this 

relationship the same in different genetic subgroups?

– A patient’s age may influence both HDL and MLD. What is the 

relation between HDL and MLD if adjusted for the influence of 

age?

Linear regression can also be used to find a model to predict the 

outcome variable. Questions might be:

– Which baseline characteristics of a patient can be used to predict 

MLD?

– How accurate is this prediction of MLD?

– Will the accuracy of the prediction of MLD significantly 

improve if another variable (for example a lab measurement not 

commonly available) is added to the model?

– Which percentage of the variability in the outcome variable 

MLD is explained by the model?

Table 1. Descriptive statistics of the example data (LEADERS 

study).

Mean
Standard 

deviation (SD)
Variance

Range 

(minimum-maximum)

MLD (mm) 2.28 0.538 0.289 0.74-3.52

HDL (mmol/l) 1.22 0.296 0.087 0.57-1.99

GENTYPE 0.40 0.492 0.242 0-1

When to apply linear regression
One of the crucial conditions in applying linear regression anal-

ysis is that a continuous outcome is involved and the effect of 

one or more explanatory variables on this outcome is of interest. 

Regression should not be confused with correlation, which focuses 

on the strength of the relation between two continuous variables 

without defining one of them as outcome, and without estimating 

effects. In principle, the explanatory variable(s) can be of different 

types: continuous, dichotomous (only two possible values), or cate-

gorical with more than two discrete values. However, if there is only 

one explanatory variable and this variable is not continuous, other 

analyses might be preferred, i.e., for a dichotomous explanatory var-

iable, a two-sample t-test, and, for a categorical explanatory variable 

with more than two categories, a one-way analysis of variance.

Prior to applying a linear regression model, it is important to 

create a scatter plot of the continuous explanatory variable (often 

indicated as the X variable in the relation) HDL and the outcome 

variable (Y variable) MLD. This plot enables checking the (X, 

Y) pairs and gives information about the shape and direction of 

the relationship. Furthermore, three required assumptions can be 

checked:

1. The straight line relationship between HDL (X) and the expected 

values of MLD (Y).

2. For each value of HDL, the values of MLD should have a nor-

mal distribution around the expected value.

3. The variability of this normal distribution should be the same 

for all values of HDL.

Figure 1 shows scatter plots of six hypothetical relations. For 

the data points in Figure 1A, Figure 1B and Figure 1C the assump-

tions hold. The presence of a significant relation still needs to 

be tested. In Figure 1D the relationship is not a straight line. In 

Figure 1E the variability of Y is not independent of X, but clearly 

increasing with increasing X. Also in Figure 1F the spread of Y 

values is not constant: there seems to be a lower threshold for val-

ues of Y (e.g., value 0).

When one of these assumptions is not fulfilled, some adaptation 

might provide an appropriate situation that allows linear regres-

sion, e.g., applying a transformation on the X or Y values.

A fourth assumption for applying linear regression is the inde-

pendency of the observations. For example, if patients have more 

than one stent with a measured MLD value, observations in the 

same patient are related. For such data, applying a linear mixed 

model (repeated measurements analysis) would probably be 

suitable.

Results from a simple regression analysis
For simple regression (one explanatory variable), fitting the model 

means that the “best fitting” straight line through the scatter plot 

of outcome variable versus explanatory variable is calculated 

(Figure 2, Table 2). The output of a regression analysis, for exam-

ple in SPSS or SAS, will give the estimated value of the inter-

cept, i.e., the expected MLD at HDL=0, and the slope of this line. 

These determine the regression equation which allows calculation 
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of expected values for the outcome, given a value of the explana-

tory variable, e.g., Expected (MLD)=1.978+0.250*HDL. In this 

specific example, the estimate value for the intercept (1.978) is 

Table 2. Results: linear model for outcome MLD on HDL.

Estimated 

coefficient B

Standard error 

(SE)
p-value

95% confidence 

interval (CI) for B

Intercept 1.978 0.146 <0.001 (1.690, 2.266)

HDL 0.250 0.116 0.032 (0.022, 0.479)

R2=0.019. Residual standard deviation (SD
res

)=0.534

Predictor Predictor Predictor

O
u
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o
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e
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u
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m

e

A B C

D E F

Figure 1. Scatter plots of six relations. Dashed lines are the fitted linear regression lines. A) Linear, positive relationship; B) linear, negative 

relationship; C) linear, neutral or no relationship; D) non-linear relationship, the regression line does not fit to these data; E) linear, but 

increasing variance with increasing value of the predictor; F) negative relationship, but decreasing variance and over-representation of 

outcome value 0.

3.6

3.4

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

HDL (mmol/l)

M
L
D

 (
m

m
)

R2 linear=0.019 95% reference line

95% reference line

95% confidence line

95% confidence line

regression line

Figure 2. Scatter plot of MLD versus HDL, with data points, 

regression line, 95% confidence lines (dotted lines close to the 

regression line) and 95% reference lines (dashed lines).

only of limited value since zero is not a realistic value for HDL. 

The slope of 0.250 indicates that when HDL increases by one unit, 

the expected MLD increases by 0.250.

Because the intercept and slope of the regression line are esti-

mated using a limited number of subjects (in this example n=243), 

we cannot be 100% sure that we have found the correct regression 

equation that will apply for the complete population from which 

the study group is sampled. Therefore, for both estimated coeffi-

cients, the standard error is given. This standard error of the coef-

ficient is, just like a standard error of the mean, used to determine 

a confidence interval and to provide the significance of testing the 

null hypothesis: H
0
: regression coefficient=0. A 95% confidence 

interval not including zero will correspond with a significance 

(p-value) below 0.05. If such results are obtained for the slope, 

this indicates a significant relationship (on the usual level of sig-

nificance α=0.05) between explanatory and outcome variable.

It should be stressed that this statistically significant relation 

does not necessarily mean that there is a clinically relevant asso-

ciation3. Whether, for example, this finding justifies further HDL 

level monitoring of a patient post intervention should be based on 

clinical knowledge.

The regression equation does not fix the relation between X 

and Y completely. Figure 2 shows that, for each value of HDL, 

the observed data points scatter around the expected value of 

MLD on the regression line, and so will data points of other 

(new) patients. The amount of variability of MLD, given a value 

of HDL, can be described by the residual standard deviation 

(SD
res

), which for this relation has a value of 0.534. This resid-

ual standard deviation (i.e., deviation after model fitting) will 
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be smaller than the “crude” standard deviation, to a greater or 

lesser extent, depending on the relation. In Figure 2, lines at dis-

tances 1.96 times the residual standard deviation from the regres-

sion line are drawn. These reference lines determine the 95% 

reference or prediction intervals for MLD, conditioned on HDL. 

Roughly 95% of the data points will lie between the two lines. 

The reference lines should not be confused with the 95% confi-

dence lines, which indicate the precision of the regression line 

(95% confidence intervals for the expected values).

While HDL is a significant predictor for MLD, we could ask 

whether HDL is also an “important” predictor for MLD. The 

answer is - “It is not very important”. The R2, square of the corre-

lation coefficient R, indicates how much of the variability in MLD 

values is explained by HDL. Since this is only 1.9%, the other 

98.1% might possibly be explained by other patient characteris-

tics. This weak relation between the variables can be seen in the 

wide spread of data points around the regression line and is also 

reflected in the small difference between the original (unadjusted) 

standard deviation of MLD (=0.538, Table 1) and the residual 

standard deviation of 0.534 (Table 2).

A much stronger relationship is found if MLD at nine-month 

follow-up is related to MLD measured immediately after the 

intervention (Figure 3, Table 3). Here, the R2 is 0.632: therefore, 

63.2% of the variability of MLD at follow-up is explained by the 

previously measured MLD. The slope is highly significant and 

Table 3. Results: linear model for outcome MLD at follow-up on 

MLD post intervention.

Estimated 

coefficient B

Standard error 

(SE)
p-value

95% confidence 

interval (CI) for B

Intercept –0.082 0.113 0.471 (–0.305, 0.141)

MLDPOST 1.005 0.047 <0.001 (0.912, 1.098)

R2=0.652. Residual standard deviation (SD
res

)=0.318
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Figure 3. Scatter plot of MLD at follow-up versus MLD post 

intervention, with regression line, 95% confidence lines (dotted lines 

close to the regression line) and 95% reference lines (dashed lines).

its estimated value of 1.005 indicates that every extra millimetre 

of MLD post intervention gives an extra millimetre at follow-up.

Extending the model
A simple regression model can be extended with other explana-

tory variables (multiple regression analysis), either continuous 

or categorical (note that adding a categorical variable with more 

than two categories requires the use of dummy variables; Online 

Appendix).

The interpretation of the regression coefficients in a multiple 

regression model is somewhat different from in a simple regres-

sion model. Regression coefficients in a multiple regression model 

give the estimated change in the outcome variable for one unit 

change of the explanatory variable, keeping all other explanatory 

variables fixed.

The effect of an explanatory variable on the outcome might 

depend on the value of other variables. For example, HDL may 

have a strong effect on MLD in patients with a certain genetic 

characteristic, while in other patients this effect is less strong or 

even not present, or the effect might increase or decrease with 

increasing age. The size of a treatment effect can vary between 

patients with different characteristics. Such interactions can 

be investigated by testing the significance of interaction terms 

(Online Appendix).

Obviously, an interaction should only be investigated if this is 

motivated by a hypothesis.

How to report a linear regression
When the results of a linear regression are described, it is obvi-

ously necessary to report what is the outcome variable in the model 

and which are the explanatory variables. For a multiple regres-

sion model the reasoning and motivation as to which independ-

ent variables were included should be explained. Was this fixed 

beforehand? Was the goal to estimate the effect of a specific vari-

able, and were the other variables added to adjust for confound-

ing? Was the objective to obtain a model with a high percentage 

of explained variance? Was inclusion of variables guided by their 

significance? Were interaction terms considered?

The resulting model is best described by presenting a table 

with the estimated regression coefficients, their standard error 

or (95%) confidence interval and, optionally, the p-value. To 

enable readers to calculate predictions, the estimated value for 

the intercept should also be reported, next to the regression 

coefficients of all variables in the model, including the adjust-

ing variables. If the focus is on one or some specific explan-

atory variables and the other variables were only needed for 

adjustment, results for these adjusting variables may be omit-

ted. However, it should be clearly stated that these variables 

were included, for instance with an accompanying footnote in 

the table. The meaning of an estimated effect can be explained 

in words, such as “for patients of the same age and gender, an 

increase in systolic blood pressure of 10 mmHg gives a decrease 

in MLD of 3.6 mm”.
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If the purpose of the model is to give predictions for new sub-

jects, the R2 should be reported, as well as information about the 

width of prediction intervals.

Conclusions and recommendations
Linear regression is the most suitable method to analyse how 

explanatory variables can explain or predict a continuous outcome 

variable. It allows effect estimation and testing the significance 

of these effects. Output from a regression analysis also shows the 

percentage of variability of the outcome variable that is explained 

by the explanatory variable(s).

Visualising the data in a scatter plot(s) should be the first 

step when considering a linear regression, to check whether the 

assumptions are fulfilled.

The variables and interactions used in a model should be speci-

fied initially, based on research questions. Inclusion of covariates 

in a final model can be guided by the data, but should be based on 

pre-specified criteria, for example the significance of the covariate 

<0.10, or a change in the estimated effect of the main explanatory 

variable of more than 10%.

In this paper we have attempted to provide some practical infor-

mation about using linear regression for the explanation or predic-

tion of a clinical outcome variable, based on one or more explanatory 

variables such as lab measurements, patient characteristics, treatment 

characteristics, etc. For more detailed material on the subject as well 

as problem solving exercises, we recommend further reading4-7.
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Supplementary data

Online Appendix. Instructions and detailed 
explanation
INTRODUCTION

This appendix contains instructions on how to apply the meth-

ods discussed in the paper using (IBM) SPSS or SAS. For SPSS, 

instructions for using the menu as well as the command syntax 

are given. All variable and dataset names for the specific varia-

bles, corresponding to the examples, are printed in bold. The out-

put shown is SPSS output. Paragraphs in this appendix correspond 

to paragraphs in the paper. An overview of some terms concerning 

linear regression is given in Online Table 1.

Online Table 1. Terminology concerning linear regression.

Clinical and statistical 

names
SPSS output SAS output

Outcome, dependent variable Dependent 
variable

Dependent 
variable

Predictor, independent 
variable, explanatory variable

Predictor

Intercept, constant, B
0
, β

0
Constant Intercept

Effect, regression coefficient, 
slope, B

1
, β

1

Unstandardised 
coefficient (B)

Parameter 
estimate

Significance, p-value Sig. Pr > |t |

DESCRIPTION OF EXAMPLE DATA

Online Table 2 shows how descriptive statistics can be obtained, 

using the SPSS menu, SPSS syntax or SAS syntax. The results are 

shown in Online Table 3.

WHEN TO APPLY LINEAR REGRESSION

Next to the assumptions mentioned in the paper, a more techni-

cal assumption is that the explanatory variable is measured with-

out error. Measurement error, if any, should only be present in the 

dependent variable.

A very important first step is to visualise the relation between 

HDL and MLD with a scatter plot, HDL and MLD both being 

continuous variables. To do this, we need to decide which varia-

ble is the dependent variable and which the explanatory variable. 

A “proven” causal relationship is not necessary to make this dis-

tinction; however, in our example it is obvious to make HDL the 

explanatory variable. Therefore, in the scatter plot the observed 

values of HDL determine the horizontal location of the dots (X 

axis) and the values of MLD, the dependent variable, determine 

the vertical location (Y axis) (Online Table 4).

In the scatter plot in Online Figure 1, we see 243 dots represent-

ing the MLD and HDL values of the patients. Point P represents 

a patient whose HDL is 1.6 mmol/l and MLD is 2.75 mm.

Online Table 2. Instructions for descriptive statistics.

SPSS menu SPSS syntax

Analyse
Descriptive statistics 
    Descriptives
Variables:

MLD

HDL

GENTYPE

OK

DESCRIPTIVES VARIABLES=mld hdl gentype
/STATISTICS=MEAN STDDEV VARIANCE MIN MAX.

SAS syntax

proc means data=leaders n mean std var min max;
var mld hdl gentype;

run;

Online Table 3. Output descriptive statistics.

N Mean SD Variance Min Max

MLD 243 2.28 0.538 0.289 0.74 3.52

HDL 243 1.22 0.296 0.087 0.57 1.99

GENTYPE 243 0.40 0.492 0.242 0 1

Online Table 4. Instructions on how to create a scatter plot.

SPSS menu SPSS syntax

Graphs
Legacy Dialogs
Scatter/Dot
Simple Scatter

Define

Y-axis: MLD
X-axis: HDL

OK

GRAPH
/SCATTERPLOT(BIVAR)=hdl WITH mld.

SAS syntax

proc gplot data=leaders;
plot mld*hdl;

run;
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The scatter plot shows a weak relationship between HDL and 

MLD. Patients with a higher HDL tend to have a higher MLD. It is 

certainly not a one-to-one relation (like a mathematical function): 

a value of HDL is not linked to only one value of MLD. Patients 

with HDL below 1.0 mmol/l have values of MLD between 0.5 and 

3.4 mm, while patients with HDL above 1.5 mmol/l have values of 

MLD between 1.25 and 3.6 mm.

RESULTS FROM A SIMPLE REGRESSION ANALYSIS

The “best fitting” line through a scatter plot is defined as the line 

for which the sum of (squared) vertical distances of all observed 

data points to that line is minimal (Online Table 5, Online Table 6,  

Online Figure 2).

We start focusing on the last table in the output (Online 

Table 7), the coefficients table. Using the estimated coefficients 

(Unstandardised coefficients, column B) we can write down 

the regression equation for the best fitting line. This equation is 

a mathematical function: each value of HDL is related to one 

value of the expected MLD, denoted by  (“MLD hat”) or by 

E(MLD|HDL): expected value of MLD, given a value for HDL:

 E(MLD|HDL)=1.978+0.250*HDL (1)

The first value in equation (1), 1.978, is the intercept of the 

regression line: the Y-value of the point of the line when X=0. 

SPSS uses the name Constant instead of intercept. This indi-

cates that 1.978 is the expected value of MLD when HDL=0, 

because E(MLD|HDL=0)=1.978+0.250*0=1.978. However, the 

value 0 is an impossible value for HDL, so this does not reflect 

a realistic data point. The second value in equation (1), 0.250, 

is called the regression coefficient or slope. This value has 

much more practical meaning than the intercept because it indi-

cates how “steeply” the regression line increases with increas-

ing HDL. For instance, the expected value for MLD when 

HDL=1 is calculated as E(MLD|HDL=1)=1.978+0.250*1=2.228. 

If HDL increases by 1, the expected value for MLD will 

increase by the value of this slope, 0.250: E(MLD|HDL=2)= 

1.978+0.250*2=2.478.
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Online Figure 1. Scatter plot of MLD versus HDL.
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Online Figure 2. Scatter plot with data points and regression line.

Online Table 5. Instructions on how to draw a regression line.

Adapting SPSS output SAS syntax

See Online Table 3 for how to create the scatter plot.
Double click at the plot in the output to activate. The plot is opened in the Chart Editor.
Elements

Fit Line at Total

symbol v=plus i=r;
proc gplot data= leaders;
 plot mld*hdl;
run;

Online Table 6. Instructions for a simple linear regression.

SPSS menu SPSS syntax

Analyse
Regression
Linear

Dependent: MLD
Independent(s): HDL

Statistics  
Regression coefficients
R Estimates
R Confidence intervals

Continue  

OK

REGRESSION
/STATISTICS COEFF OUTS CI(95) R ANOVA
/DEPENDENT=mld
/METHOD=ENTER hdl.

SAS syntax

proc reg data= leaders clb;
model mld=hdl;

run;
quit;
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Using the regression equation, we can calculate for each value 

of HDL the expected (sometimes called predicted) value of MLD. 

This regression line is plotted in Online Figure 2. The increase of 

0.250 in MLD when HDL changes from 1.0 to 2.0 is indicated.

Because the intercept and slope of the regression line are esti-

mated using a limited number of data points (in this example 

n=243), we cannot be 100% sure that we have found the correct 

regression equation that will apply for the complete population. 

For both estimated values, SPSS gives the standard error (Std 

error, Online Table 7, Coefficients). What is important is whether 

we can (or cannot) be certain that there is a real relation between 

HDL and MLD, i.e., that the slope is different from zero. A zero 

slope would mean that the value of HDL is not at all predictive 

for the value of MLD. In the column Sig., still in the Coefficients 

table, we can find the p-value for the (two-sided) test of the null 

hypothesis: H
0
: regression coefficient=0. For the regression coef-

ficient of HDL in this model p=0.032. Applying the usual sig-

nificance level α=0.05, we reject this null hypothesis, indicating 

a significant relationship between HDL and MLD. Also, the 95% 

confidence interval (CI) (columns at the right: 95% CI=[0.022 to 

0.479]) indicates that zero is a very unlikely value for the slope, 

because zero is not included in this CI. This is another way to 

show that there appears to be a significant relation between HDL 

and MLD (for the intercept, p-value and CI are also given, but 

these have limited value in this particular example).

As noted before, the regression equation (1) does not fix the 

relation between HDL and MLD completely. For a given value of 

HDL, e.g., HDL=1.5, the observed data points scatter around the 

expected value of MLD of 2.353 and so will data points of other 

(new) patients with HDL=1.5. The amount of variability, given 

a value of HDL, can be described by the residual standard devia-

tion (named Std. Error of the Estimate in the SPSS output, Online 

Table 7, Model Summary). In this example the residual standard 

deviation has a value of 0.534. This value can be compared to the 

ordinary standard deviation of the outcome MLD, which describes 

the variation of MLD values around its mean. We saw (Online 

Table 3) that this standard deviation was 0.538, so in this example 

the residual standard deviation is only slightly smaller. In Online 

Figure 3, lines at a distance 1.96 times the residual standard devia-

tion from the regression line are drawn. These lines determine the 

95% prediction intervals for MLD, conditioned on HDL. Around 

the predicted MLD of 2.228 mm for an HDL of 1 mmol/l, the 95% 

prediction interval is 1.181 to 3.275. Roughly 95% of the data 

points will lie between the two lines.

Now that we know HDL is a significant predictor for MLD, we 

could ask whether HDL is also an “important” predictor for MLD. 

The answer is - “It is not very important”. The value of R2 in 

the table Model Summary (Online Table 7), 0.019, indicates how 

much of the variability in MLD values is explained by HDL. Since 

this is only 1.9%, the other 98.1% might possibly be explained 

Online Table 7. Output tables of simple linear regression.

Variables entered/removeda

Model Variables entered Variables removed Method

1 HDLb . Enter

a. Dependent variable: MLD; b. All requested variables entered.

Model summary

Model R R square
Adjusted 

R square

Std error of 

the estimate

1 0.138a 0.019 0.015 0.534

a. Predictors: (constant), HDL

ANOVAa

Model
Sum of 

squares
df

Mean

square
F Sig.

1 Regression 1.324 1 1.324 4.645 0.032b

Residual 68.680 241 0.285

Total 70.003 242

a. Dependent variable: MLD: b. Predictors: (constant), HDL

Coefficientsa

Model

Unstandardised 

coefficients

Standardised 

coefficients
t Sig.

95% confidence 

interval for B

B Std error Beta
Lower 

bound

Upper 

bound

1
(Constant) 1.978 0.146 13.527 0.000 1.690 2.266

HDL 0.250 0.116 0.138 2.155 0.032 0.022 0.479

a. Dependent variable: MLD
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by other patient characteristics. This weak relation between the 

variables can be seen in the wide spread of data points around 

the regression line and is also reflected in the small difference 

between original (unadjusted) and residual standard deviation.

EXTENDING THE MODEL

Adding a second continuous explanatory variable is simply done 

by specifying this in the box Independent(s). A dichotomous 

explanatory variable can be added in the same way. Most appro-

priate is to code this variable with values 0 and 1.

If GENTYPE is added to the model of MLD regressed on HDL 

as a second independent variable, the output shows a table with 

coefficients as displayed in Online Table 8.

These estimates indicate that a predicted value for MLD using 

this model is described by:

E(MLD|HDL, GENTYPE)=1.898+0.209*HDL+0.323*GENTYPE (2)

If we consider patients with GENTYPE=0, the third term at 

the right side of the equation is 0, so it can be disregarded. The 

resulting equation represents a line with intercept 1.898 and slope 

0.209. For patients with GENTYPE=1, the predicted value is just 

enlarged with value 0.323. Plotting the predicted values gives two 

parallel regression lines (Online Figure 4).

The plot shows clearly that this model assumes that the effect of 

HDL on MLD does not interact with the effect of GENTYPE on 

MLD: regardless of the value of GENTYPE, the predicted MLD 

always increases with 0.209 if HDL increases by one (parallel 

lines have equal slope). This also holds the other way round: for 

every value of HDL, the difference in predicted MLD between 

a patient with GENTYPE=1 and GENTYPE=0 is always 0.323 

(the distance between parallel lines is constant). To investigate 

if this is correct, or if the effects do interact, we could add the 

interaction term HDL*GENTYPE to the model and check its 

significance. In SPSS a new variable has to be created indicat-

ing this interaction, calculated as the product of variables HDL 

and GENTYPE. Note that this variable has the value of 0 for 

all patients with GENTYPE=0 and is just a copy of HDL for all 

patients with GENTYPE=1 (Online Table 9).

Running the model with independent variables HDL, GENTYPE 

plus the interaction variable HDL_GENTYPE results in the esti-

mated coefficients presented in Online Table 10.

Given values for HDL and GENTYPE, a prediction for MLD is 

now expressed as:

E(MLD|HDL, GENTYPE)=2.098+0.043*HDL–0.275*

 GENTYPE +0.484*HDL*GENTYPE (3)

95% reference line
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Online Figure 3. Scatter plot with data points, regression line and 

95% reference lines.

Online Table 8. Output estimated coefficients linear regression with two explanatory variables.

Coefficientsa

Model

Unstandardised 

coefficients

Standardised 

coefficients
t Sig.

95% confidence 

interval for B

B Std error Beta
Lower 

bound

Upper 

bound

1

(Constant) 1.898 0.141 13.476 0.000 1.621 2.176

HDL 0.209 0.111 0.115 1.874 0.062 –0.011 0.428

GENTYPE 0.323 0.067 0.295 4.825 0.000 0.191 0.455

a. Dependent variable: MLD

regression line
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regression line
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Online Figure 4. Scatter plot with parallel regression lines for the 

genetic groups (model without interaction). Squares and solid line: 

GENTYPE=1, Xs and dotted line: GENTYPE 0.
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Linear regression to analyse a continuous outcome

The significance for the interaction term is p=0.039, so below 

0.05, indicating that this coefficient is significantly different from 

zero, and is therefore not negligible (the significance of the main 

terms HDL and GENTYPE, which are both above 0.05, is of less 

importance. They should not be removed from the model as long 

as the interaction term is included).

Substituting in (3) GENTYPE=0 and GENTYPE=1, respec-

tively, results in the following equations to calculate the predicted 

value of MLD for the two genetic groups:

 E(MLD|HDL, GENTYPE=0)=2.098+0.043*HDL  (4)

 E(MLD|HDL, GENTYPE=1)=1.823+0.527*HDL  (5)

These equations clearly show that for GENTYPE=0 MLD is almost 

unrelated to HDL (slope 0.043), while for GENTYPE=1 the relation 

is much stronger (slope 0.527). So the relation between HDL and 

MLD is dependent on the value of GENTYPE (arguing the other way 

round, we can say that the effect of GENTYPE is not constant, but 

depends on the value of HDL, e.g., when HDL=1, the predicted differ-

ence in MLD between the genetic groups is –0.275+0.484*1=0.211; 

when HDL=2 this difference is –0.275+0.484*2=0.693).

Online Table 10. Estimated coefficients of linear regression with two explanatory variables and their interaction.

Coefficientsa

Model
Unstandardised coefficients Standardised coefficients

t Sig.
95% confidence interval for B

B Std error Beta Lower bound Upper bound

1

(Constant) 2.098 0.170 12.353 0.000 1.764 2.433

HDL 0.043 0.136 0.024 0.315 0.753 –0.226 0.312

GENTYPE –0.275 0.296 –0.251 –0.930 0.353 –0.858 0.308

HDL_GENTYPE 0.484 0.233 0.575 2.076 0.039 0.025 0.943

a. Dependent variable: MLD
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Online Figure 5. Scatter plot with regression lines for the genetic 

groups (model with interaction). Squares and solid line: 

GENTYPE=1, Xs and dotted line: GENTYPE=0.

Online Table 9. Instructions on how to create a variable to be used as interaction term.

SPSS menu SPSS syntax

Transform

Compute variable

Target variable: HDL_GENTYPE

Numeric expression:

HDL*GENTYPE

OK

COMPUTE hdl_gentype=hdl*gentype.
EXECUTE.

SAS syntax

data leaders2;
set leaders;
hdl_gentype=hdl*gentype;

run;

Online Table 11. Instructions on how to create a scatter plot with regression lines for subgroups.

SPSS menu SPSS syntax

Graphs
Legacy Dialogs
Scatter/Dot
Simple Scatter

Define  
Y-axis: MLD
X-axis: HDL
Set markers by: GENTYPE

OK

GRAPH
/SCATTERPLOT(BIVAR)=hdl WITH mld BY gentype.

SAS syntax

symbol v=plus i= r;
proc gplot data= leaders;

plot mld*hdl=gentype;
run;

SPSS: Double click at the plot in the output to activate. The plot is opened in the Chart Editor.
Elements

Fit line at Subgroups

A scatter plot with the two lines for the subgroups, as given in 

Online Figure 5, can easily be created (Online Table 11).
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If we wanted to use a categorical explanatory variable with 

more than two categories in a linear regression procedure, it 

would require creation of dummy variables. Alternatively, we 

could switch to applying the procedure (univariate) general linear 

model, with categorical variables indicated as fixed factor(s) and 

continuous variables as covariate(s). However, further discussion 

about this procedure is beyond the scope of this paper.

To check the assumptions in a multiple regression model, again, 

plotting the outcome variable versus each continuous explanatory 

variable may be useful, if applicable using different symbols for sub-

groups, as shown in Online Figure 4 and Online Figure 5. Furthermore, 

the residuals of the regression (observed minus predicted value of the 

outcome variable) should be plotted versus the different explanatory 

variables and versus the predicted values. (Online Table 12 shows 

how to save residuals and predicted values from a linear regression.) 

The residuals should randomly scatter around 0 for all values of X. 

A histogram of the residuals should show a bell-shaped (normal) dis-

tribution (Online Table 13, Online Figure 6). 
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Online Figure 6. Histogram of residuals.

Online Table 12. Instructions on how to save predicted values and residuals.

SPSS menu SPSS syntax

Analyse
Regression
Linear

Dependent: MLD
Independent(s):
HDL

GENTYPE

HDL_GENTYPE

Statistics  
Regression coefficients
R Estimates
R Confidence intervals

Continue  

Save  
Predicted values
R Unstandardised residuals
R Unstandardised predictions

Define  

OK

REGRESSION
/STATISTICS COEFF OUTS CI(95) R ANOVA
/DEPENDENT=mld
/METHOD=ENTER hdl gentype hdl_gentype
/SAVE PRED RESID.

SAS syntax

proc reg data= leaders clb;
model mld=hdl gentype hdl_gentype;
output out= leaders_pr

residuals= res1 predicted=pre1;
run;
quit;

Online Table 13. Instructions on how to create a histogram.

SPSS menu SPSS syntax

Graphs
Legacy Dialogs
Histogram
Variable: RES_1

OK

GRAPH /HISTOGRAM=RES_1.

SAS syntax

proc univariate data=leaders_pr;
var res1;
histogram res1;

run;


