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Abstract
Background: It would be ideal for a non-hyperaemic index to predict fractional flow reserve (FFR) more 
accurately, given FFR’s extensive validation in a multitude of clinical settings.
Aims: The aim of this study was to derive a novel non-hyperaemic algorithm based on deep learning and 
to validate it in an internal validation cohort against FFR.
Methods: The ARTIST study is a post hoc analysis of three previously published studies. In a derivation 
cohort (random 80% sample of the total cohort) a deep neural network was trained (deep learning) with 
paired examples of resting coronary pressure curves and their FFR values. The resulting algorithm was 
validated against unseen resting pressure curves from a random 20% sample of the total cohort. The pri-
mary endpoint was diagnostic accuracy of the deep learning-derived algorithms against binary FFR ≤0.8. 
To reduce the variance in the precision, we used a fivefold cross-validation procedure.
Results: A total of 1,666 patients with 1,718 coronary lesions and 2,928 coronary pressure tracings were 
included. The diagnostic accuracy of our convolutional neural network (CNN) and recurrent neural net-
works (RNN) against binary FFR ≤0.80 was 79.6±1.9% and 77.6±2.3%, respectively. There was no statisti-
cally significant difference between the accuracy of our neural networks to predict binary FFR and the most 
accurate non-hyperaemic pressure ratio (NHPR).
Conclusions: Compared to standard derivation of resting pressure ratios, we did not find a significant 
improvement in FFR prediction when resting data are analysed using artificial intelligence approaches. Our 
findings strongly suggest that a larger class of hidden information within resting pressure traces is not the 
main cause of the known disagreement between resting indices and FFR. Therefore, if clinicians want to 
use FFR for clinical decision making, hyperaemia induction should remain the standard practice.
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Abbreviations
CNN convolutional neural network
dPR diastolic pressure ratio
FFR fractional flow reserve
iFR instantaneous wave-free ratio
NHPR non-hyperaemic pressure ratio
Pa aortic pressure
Pd distal coronary pressure
Pd/Pa resting distal coronary pressure to aortic pressure ratio
RFR relative flow reserve
RNN recurrent neural network

Introduction
Fractional flow reserve (FFR) has become the invasive refer-
ence standard for assessing the physiological significance of 
a coronary stenosis based on randomised clinical outcome tri-
als and mechanistic studies1-4. Guidance of percutaneous coro-
nary intervention (PCI) by FFR has been shown to be superior 
to angiography-guided PCI and medical therapy for improving 
both symptoms and prognosis and is recommended by current 
guidelines1-6.

In order to measure FFR, adenosine (or another vasodilator 
drug) is required to induce hyperaemia, which adds some cost and 
might cause transient, short-lasting symptoms1. Therefore, several 

non-hyperaemic indices have been proposed that do not require 
adenosine but are derived from non-hyperaemic (resting) coronary 
pressure curves7-10.

Such a resting index usually assesses the pressure ratio during 
a specific period within the cardiac cycle or focuses on qualitative 
parameters. Unfortunately, the accuracy of existing non-hyperae-
mic indices to predict FFR ≤0.80 has consistently been shown to 
be approximately 80%7-10.

A possible explanation for this suboptimal predictive value 
of resting indices is that the information needed to predict FFR 
from resting curves exists in a more complex and subtle manner 
beyond simplistic pressure ratios or known qualitative features. In 
addition, traditional waveform analysis might have limits to dis-
cover complex information contained within the pressure curves. 
However, it would be ideal for a non-hyperaemic index to predict 
FFR more accurately, given its extensive validation in a multitude 
of clinical settings.

Deep learning, a subfield of artificial intelligence, can model 
extremely complicated relationships between inputs and out-
puts, and has shown potential to improve health care in several 
areas11,12. A deep learning algorithm, a so-called deep neural net-
work, can train itself when provided with a sufficient number of 
correct examples of input and output. Therefore, we hypothesised 
that a deep neural network could be trained to predict FFR after 

Correct examples of input (resting curves)
and output (FFR)

Deep neural network

New resting pressure curves No improvement in diagnostic accuracy to predict FFR
versus existing non-hyperaemic ratios

Trained deep neural
network

Derivation cohort

Validation cohort

(%) 100

80

60

40

20

0
CNN RNN Pd/Pa iFR dPR RFR

Visual summary. Development and validation of deep neural networks to predict fractional flow reserve (FFR) from resting coronary 
pressure curves. In a derivation cohort, a deep neural network was trained (deep learning) with examples of resting coronary pressure 
curves and matching FFR values. After the neural network was trained, its new algorithm was validated using different resting pressure 
curves. Deep learning-based algorithms did not improve the diagnos tic accuracy of predicting FFR compared to other non-hyperae mic 
indices in a clinically relevant way.
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receiving many examples of resting pressure curves and their cor-
responding FFR values.

The aim of this study was to derive a novel non-hyperaemic 
algorithm based on deep learning and to validate it in an internal 
validation cohort against FFR.

Methods
STUDY POPULATION
The ARTIST study (ARTificial Intelligence to identify function-
ally SignificanT coronary stenoses) is a post hoc analysis of three 
previously published studies: CONTRAST (clinicaltrials.gov 
NCT02184117), VERIFY (clinicaltrials.gov NCT01559493), and 
VERIFY 2 (clinicaltrials.gov NCT02377310). All studies included 
in this analysis were approved by the institutional review boards 
of the individual sites. Detailed descriptions and primary results of 
these studies have been published previously13-15. In short, all three 
studies recorded raw tracings of simultaneous aortic (Pa) and dis-
tal coronary pressure (Pd) during both resting (non-hyperaemic) 
conditions and maximal hyperaemia induced by either intravenous 
or intracoronary adenosine.

FRACTIONAL FLOW RESERVE (FFR)
In order to assess FFR uniformly among trials, all hyperaemic 
pressure curves were anonymised and independently analysed for 
calculation of smart minimum FFR (smFFR) using an automated 
algorithm16 at the Weatherhead PET Imaging Center in Houston, 
TX, USA. Calculation of smFFR occurred without knowledge of 
matching non-hyperaemic data.

NON-HYPERAEMIC PRESSURE RATIOS (NHPR)
The following definitions were used to calculate various NHPR – 
diastolic pressure ratio (dPR): average Pd/Pa from dicrotic notch 
to 5 ms before end of diastole; resting Pd/Pa: average Pd/Pa over 
the entire heart cycle; instantaneous wave-free ratio (iFR): average 
Pd/Pa from 25% into diastole until 5 ms before end of diastole; 
relative flow reserve (RFR): value at which the filtered ratio of Pd 
and Pa is lowest during the entire cardiac cycle. According to the 
literature, a binary cut-off of ≤0.92 was used for resting Pd/Pa and 
≤0.89 for other NHPR8.

DERIVATION COHORT
The Visual summary provides an overview of the study design. 
In a derivation cohort (random 80% sample of the total cohort) 
a deep neural network was trained (deep learning) with paired 
examples of resting coronary pressure curves and their FFR val-
ues. To reduce the variance in the precision, we used a fivefold 
cross-validation procedure.

ARTIFICIAL NEURAL NETWORK
A one-dimensional convolutional neural network (CNN) was 
used to classify resting pressure recordings into FFR positive 
(FFR ≤0.80) or FFR negative (FFR >0.80) binary categories, and 
to predict FFR as a continuous outcome. A CNN can automatically 

learn and identify features that are present among the resting coro-
nary pressure curves11,12. The architecture of the CNN consisted 
of five layers (Figure 1A) to provide feature extraction on differ-
ent levels. Several variations of this CNN architecture were tested 
(Supplementary Table 1). A detailed description of neural archi-
tectures is provided in Supplementary Appendix 1.

In addition to a CNN, we tested a different deep learning archi-
tecture – a recurrent neural network (RNN) (Figure 1B). An RNN 
is especially designed to incorporate temporal dependency among 
features by adding information of a previous interval to the next 
interval17. This contrasts with a CNN, which is insensitive to the 
temporal location of the feature within the pressure curve itself. 
Two different RNN variations were used mutually exclusively – 
long short-term memory cells (LSTM) and gated recurrent units 
(GRU).

All deep learning models were implemented using scikit-learn in 
Python™ (Python Software Foundation, Wilmington, DE, USA).

VALIDATION COHORT
After a neural network was trained, its resulting algorithm was val-
idated against unseen resting pressure curves from a random 20% 
sample of the total cohort. The primary endpoint of the validation 
cohort was diagnostic accuracy of the deep learning-derived algo-
rithms against binary FFR ≤0.8. In addition, sensitivity, specific-
ity, positive predictive value, and negative predictive value were 
calculated, with FFR ≤0.80 as reference standard. The diagnostic 
performance was presented as mean and standard deviation of the 
fivefold cross-validation procedure.

The diagnostic performance of several non-hyperaemic pres-
sure ratios was also calculated and compared using a McNemar 
test. A mean and 95% confidence interval for the diagnostic per-
formance was calculated for the non-hyperaemic pressure ratios 
based on these data.

Prediction of FFR as a continuous variable was analysed using 
the area under the receiver operating characteristic (ROC) curve 
(compared using the DeLong method).

Applicable tests were two-tailed, and p<0.05 was considered 
statistically significant. Analysis was conducted using R, version 
3.4.3 (R Foundation for Statistical Computing, Vienna, Austria).

Results
A total of 1,666 patients with 1,718 coronary lesions and 2,928 
coronary pressure tracings were included. Supplementary Table 2 
summarises the baseline characteristics. Approximately 71% of 
patients were male, and the majority of patients had one or more 
classic risk factors for coronary artery disease. Baseline charac-
teristics and angiographic data in the individual trials have been 
reported previously13-15. Supplementary Figure 1 shows den-
sity plots of FFR and several non-hyperaemic pressure ratios of 
our pooled cohort. Median resting Pd/Pa was 0.92 (interquartile 
range [IQR] 0.88-0.96), median iFR was 0.89 (IQR 0.83-0.94), 
and median FFR was 0.80 (IQR 0.72-0.86). Out of 1,718 coronary 
lesions, 923 (54%) had FFR ≤0.80.
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ENDPOINTS
Figure 2 shows the diagnostic performance of our deep neu-
ral architectures compared to FFR. Diagnostic accuracy (acc), 
sensitivity (sens), specificity (spec), positive predictive value 
(PPV), and negative predictive value (NPV) of our CNN against 
binary FFR ≤0.80 using fivefold cross-validation was 79.6±1.9%, 
81.5±3.2%, 77.1±6.4%, 80.6±3.6%, and 78.5±2.4%, respectively. 
Acc, sens, spec, PPV, and NPV for our RNN against FFR using 
fivefold cross-validation were 77.6±2.3%, 73.8±6.1%, 81.5±6.4%, 
82.6±3.5%, and 73.4±3.8%, respectively.

The diagnostic accuracy of NHPR was 79.7% for Pd/Pa, 76.1% 
for iFR, 76.4% for dPR, and 76.3% for RFR. There was no sta-
tistically significant difference between the diagnostic accuracy 
of both neural networks and the NHPR with the highest accuracy 
(Pd/Pa), p>0.40 for both comparisons. Optimal cut-off values for 
existing NHPR to predict binary FFR ≤0.80 in our large cohort 
were near identical to published cut-off values (Supplementary 
Table 3).

As detailed in Supplementary Figure 2, the area under the 
ROC curve of our CNN and RNN was 0.88 and 0.84, respec-
tively. Compared to other NHPR, the AUC of the CNN was larger 

compared to 0.86 for Pd/Pa, 0.84 for iFR, 0.85 for dPR, and 
0.85 for RFR (DeLong p<0.01 vs other NHPR), although neither 
analysis was pre-specified or adjusted for multiple comparisons 
(Supplementary Table 4). Sensitivity analyses using 16 variations 
in CNN and RNN architectures did not result in an increase in the 
diagnostic performance against binary FFR ≤0.80 (Supplementary 
Table 1). In addition, a pressure recording-level analysis (multi-
ple pressure recordings per lesions allowed) or patient-level analy-
sis (randomly selecting one coronary lesion per patient in case of 
multiple lesions per patient; ~4% of patients) instead of a lesion-
level analysis did not alter the diagnostic performance.

Discussion
The ARTIST study is the first to assess deep learning for the pre-
diction of FFR from resting coronary pressure curves. We found 
that deep learning-based algorithms did not improve the diagnos-
tic accuracy of predicting FFR compared to other non-hyperae-
mic indices in a clinically relevant way. Our findings eliminate 
a larger class of possible hidden information than has been exam-
ined before. Therefore, inducing maximal hyperaemia remains 
a prerequisite for accurate FFR assessment.

RNN RNN

Input layer
Resting Pd and Pa

1D-CNN
5 filters each

1D-CNN
5 filters each

Maximal
pooling
layer

Maximal
pooling
layer

Fully connected
layer

Output layer

Input layer
Resting Pd and Pa

RNN layer
(LSTM or GRU)

RNN layer
(LSTM or GRU)

Fully connected
layer

Output layer

+ReLU +ReLU

+ReLU +ReLU

A

B

Figure 1. Detailed architecture of deep neural networks. A) CNN. B) RNN. CNN: convolutional neural network; FFR: fractional flow reserve; 
GRU: gated recurrent unit; HR: heart rate; LSTM: long short-term memory; Pa: aortic pressure; Pd: distal coronary pressure; 
ReLU: rectified linear unit; RNN: recurrent neural network
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THE NEED FOR FFR (PREDICTION) IN THE ERA OF NHPR
Recently, two large randomised clinical trials have demonstrated 
that iFR-guided PCI (one of several NHPR) is non-inferior to 
FFR-guided PCI in a low-risk population at maximal two-year fol-
low-up, when including ~80% of concordant FFR/iFR cases9,18,19. 
Although NHPRs are a welcome addition to the interventional 
armamentarium to assess coronary physiology in such low-risk 
populations, it is still desirable to measure FFR itself (or predict 
it accurately) for several reasons. First, only FFR has been tested 
against a true gold standard of myocardial ischaemia1. Second, 
FFR is the only index that has been proven superior to both medi-
cal therapy and angio-guided PCI in randomised clinical trials 
with follow-up extending to 15 years2-4. Third, FFR has been clini-
cally validated in many subgroups, including non-culprit lesions 
of acute coronary syndromes, left main disease, pre-coronary 
bypass surgery, and bifurcation lesions2-4,20-22. Finally, the clinical 
benefit and safety of FFR-guided PCI has been tested not only in 
randomised trials, but also in large real-world observational stud-
ies23,24. For example, in the randomised DEFINE-FLAIR study on 
iFR, only about half of PCIs were guided by physiology, related to 
the protocol-based requirement to confine physiology assessment 
to lesions with 40-70% diameter stenosis9. How NHPRs perform 
in a real-world setting, including frequently occurring 70-90% 
lesions, remains an important yet unanswered clinical question.

THE QUEST FOR HIDDEN INFORMATION IN RESTING 
CORONARY PRESSURE CURVES
Over the past decade, there has been increasing interest in pre-
dicting FFR from resting coronary pressure curves, aiming at 

simplifying the procedure and preventing the need for adeno-
sine7-9. During this time, the results of multiple studies in this field 
can be summarised by two simple conclusions. First, all proposed 
NHPRs are numerically equivalent. Second, the diagnostic accu-
racy of NHPRs to predict binary FFR ≤0.80 is around 80% regard-
less of the timing within the cardiac cycle7-9.

In order to create a non-hyperaemic index that is able to predict 
FFR more accurately, the ARTIST study was designed to over-
come limitations of previous studies. Supplementary Table 5 sum-
marises the potential advantages of our design compared to pivotal 
studies in this field.

First, ARTIST was structured to create a new index with the 
highest possible agreement with FFR, in contrast to several previ-
ous studies that only validated an existing index.

Second, almost all previous studies focused only on the ratio 
of distal to aortic pressure during a specific period of the car-
diac cycle and neglected qualitative information. For example, 
it is known that the distal coronary pressure curve changes, not 
only numerically, but also in morphology with increasing steno-
sis severity10. Only two previous studies incorporated pre-speci-
fied qualitative features, such as the presence of the dicrotic notch 
and diastolic dipping10 or wave-intensity analysis25, without signi-
ficant success. Although some of these qualitative features were 
chosen on a physiological basis, such assumptions neglect the 
existence of possible additional information outside of the under-
lying theory.

Third, to the best of our knowledge, this study was the first 
to use deep learning to predict FFR from resting pressure curves. 
Over recent years, deep neural networks have shown impressive 
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Figure 2. Diagnostic performance of our deep learning-based algorithms and other NHPRs, against binary FFR ≤0.80 (diagnostic accuracy 
of both neural networks not statistically different against the most accurate NHPR). Acc: accuracy; CNN: convolutional neural network; 
dPR: diastolic pressure ratio; FFR: fractional flow reserve; iFR: instantaneous wave-free ratio; NPV: negative predictive value; Pd/Pa: ratio 
of distal coronary pressure to aortic pressure; PPV: positive predictive value; RFR: relative flow reserve; RNN: recurrent neural network; 
Sens: sensitivity; Spec: specificity
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results in several areas of medicine11,12. A deep neural network 
uses multiple layers to abstract features on different levels of the 
data12. As such, even non-pre-specified features have the poten-
tial to be identified. Therefore, we hypothesised that deep learning 
would be capable of identifying complex interactions among fea-
tures contained in the resting pressure curve that might be pivotal 
to predicting FFR more accurately.

Finally, ARTIST was among the largest cohorts to date study-
ing the prediction of FFR from resting coronary pressure curves.

Despite these numerous advantages in study design, including 
the use of deep learning, the current study reached an accuracy to 
predict FFR of approximately 80%, in accordance with previously 
reported NHPRs.

Given the small changes in AUC as shown in Supplementary 
Figure 2 among NHPRs largely considered to be clinically equi-
valent (largest delta 0.02, with baseline Pd/Pa actually having the 
largest AUC) and lack of pre-specification between CNN and 
RNN architectures (delta 0.04 between the two methods), we feel 
that the statistically larger AUC for CNN versus other NHPRs 
(deltas 0.02 to 0.04) should not be overinterpreted as providing 
a meaningful clinical advantage.

WHY IS IT NOT POSSIBLE TO PREDICT FFR ACCURATELY 
FROM RESTING PRESSURE CURVES?
Several factors might explain why FFR cannot be predicted 
accurately from resting coronary pressure curves. The hyper-
aemic trans-stenotic pressure gradient is dependent on sev-
eral unpredictable factors, including hyperaemic coronary flow 
and a complex stenosis-specific pressure-flow relationship26,27. 
Beyond epicardial disease, hyperaemic coronary flow is mostly 
dependent on the amount of myocardial mass and microvascular 
function, which appear to be unpredictable from resting coro-
nary pressure curves. The pressure-flow relationship between the 
trans-stenotic pressure gradient (ΔP) and average whole-cycle 
flow is a curvilinear function: ΔP=f∙Q + s∙Q2 26,27. This relation-
ship is dependent on both friction (f) and separation (s) pressure 
loss. Both coefficients depend on vessel size, stenosis geometry, 
and blood rheology26,27, which apparently do not affect resting 
coronary pressure morphology in a way that can be picked up by 
a neural network. Future studies might increase the diagnostic 
accuracy of deep learning-based algorithms when incorporating 
additional information such as stenosis geometry or myocardial 
mass. In addition, if one could measure the pressure gradient 
at different flow rates, then one could assess the corresponding 
pressure-flow relationship. Since the resting pressure gradient is 
obtained only at single flow rate, predictions about hyperaemic 
conditions cannot be made with acceptable precision. Finally, it 
would be of interest for future deep learning models to incorpo-
rate clinical outcome. These models might be able to find hidden 
information in (non-)hyperaemic curves useful to predict future 
events or symptoms.

We observed a lower accuracy in CNNs including a rectified lin-
ear unit (ReLU). One of the potential advantages of using a ReLU 

is that it decreases overfitting in complex data sets, although some 
information is lost in the process. It might be possible that useful 
information to predict FFR was lost due to the ReLU, although 
this might also be related to a play of chance.

Limitations
This study has several limitations. First, this was a post hoc analy-
sis. Second, although our cohort is the largest reported to predict 
FFR from resting coronary pressure curves, deep learning usually 
requires huge amounts of data to function optimally. Nevertheless, 
given the fact that our results do not provide a hint for a possible 
improvement in accuracy, we believe that a much bigger cohort 
would not change the conclusion of this paper relevantly. Third, 
although we already tested multiple deep neural architectures, it 
cannot be excluded that other architectures would yield a differ-
ent result. However, given the near identical accuracy between the 
architectures used in our study, we do not expect that a different 
architecture would increase the predictable value in a clinically 
meaningful manner.

Conclusions
Compared to standard derivation of resting pressure ratios, we did 
not find a significant improvement in FFR prediction when rest-
ing data are analysed using artificial intelligence approaches. Our 
findings strongly suggest that a larger class of hidden information 
within resting pressure traces is not the main cause for the known 
disagreement between resting indices and FFR. Therefore, if cli-
nicians want to use FFR for clinical decision making, hyperaemia 
induction should remain the standard practice.

Impact on daily practice
Regardless of the use of deep learning, the diagnostic accu-
racy to predict FFR from resting coronary pressure curves is 
around 80%. Therefore, inducing maximal hyperaemia remains 
a prerequisite for accurate FFR assessment. Adding clinical 
information or (non-invasive) anatomical information might 
increase the diagnostic performance of future deep learning 
models at the cost of greater complexity for the user.
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Supplementary Appendix 1. Methods    

Deep learning architectures – pre-processing 

The input data set consisted of simultaneous recordings of both the resting distal coronary 

pressure and the aortic pressure. All recordings were resampled to 100 Hz. Three consecutive 

cardiac cycles were randomly selected from each resting (non-hyperaemic) recording. In 

order to overcome differences in heart rate, a temporal alignment procedure was performed by 

resampling all data to 60 samples per cardiac cycle leading to a total of 180 samples per input. 

Information on heart rate was available in the raw tracing but was lost in this process of 

resampling. For this reason, the heart rate was extracted from the raw tracings and added in 

the final layer of the neural network. The neural networks were trained solely on resting 

pressure curves and no additional features were included.  

 

Artificial neural network 

A one-dimensional convolutional neural network (CNN) was used to classify resting pressure 

recordings into FFR positive (FFR ≤0.80) or FFR negative (FFR >0.80) binary categories, and 

to predict FFR as a continuous outcome. A CNN can automatically learn and identify features 

that are present among the resting coronary pressure curves [11,12]. The architecture of the 

CNN consisted of five layers (Figure 2A). Feature extraction was performed by the first 

convolutional layer consisting of five input filters for each pressure curve. Input filter size was 

30 samples (i.e., a half cardiac cycle). The second layer was a maximal pooling layer (down 

sampling by order of 2) to extract dominant features from the data and to prevent overfitting. 

Next, the results were fed into a second convolutional layer with a subsequent maximal 

pooling layer to extract features at a higher level of abstraction. A rectified linear units 

(ReLU) activation function was applied to both convolutional layers. Heart rate during rest 

was extracted from the raw tracings and incorporated into the final layer. The final layer was a 

fully connected layer with sigmoid activation to transform the features into the final output (or 

classification): FFR+ (FFR ≤0.80) or FFR– (FFR >0.80).  

 

Several variations of this CNN architecture were tested (Supplementary Table 1): inclusion 

and exclusion of ReLU activation, addition of a second convolutional layer, filter size of 30 

versus 60, and including and excluding heart rate.  



 

 

In addition to a CNN, we tested a different deep learning architecture - a recurrent neural 

network (RNN) (Figure 2B). A recurrent neural network is especially designed to incorporate 

temporal dependency among features by adding information of a previous interval to the next 

interval [17]. This contrasts with a CNN, which is insensitive to the temporal location of the 

feature within the pressure curve itself. Two different RNN variations were used mutually 

exclusively: long short-term memory cells (LSTM) and gated recurrent units (GRU). The first 

temporal feature extraction was performed by an RNN layer which used the combined Pd/Pa 

pressure curve as input. The second layer was another RNN layer to extract additional 

features on different time scales. A fully connected layer acted as the final layer with sigmoid 

activation and was mapped to the final output (or classification): FFR+ (FFR ≤0.80) or FFR–

(FFR >0.80). Heart rate during rest was extracted from the raw tracings and incorporated into 

the final layer. Several variations of this RNN architecture were tested by varying the number 

of RNN layers, LSTM versus GRU, and by including and excluding heart rate 

(Supplementary Table 1).  

 

For predicting FFR as a continues outcome, the models were trained with the absolute FFR 

values as outcome. The mean squared error between ground truth (FFR) and predictions was 

now taken as the optimisation criterion, as opposed to binary cross entropy in the case of 

predicting binary FFR ≤0.80. 

 

Both CNN and RNN were trained using 4,000 epochs; at each epoch the models were fed in 

batches of 64. All deep learning models were implemented using scikit-learn in Python™. 

 

 



 

 

Supplementary Figure 1. Density plots of FFR and several non-hyperaemic pressure ratios. 

Blue dashed line represents median. Red line represents published cut-off value.  

dPR: diastolic pressure ratio; FFR: fractional flow reserve; iFR: instantaneous wave-free ratio; 

NHPR: non-hyperaemic pressure ratio; Pd/Pa: resting distal coronary pressure to aortic 

pressure ratio; RFR: relative flow reserve  

  



 

 

  

Supplementary Figure 2. Receiver operating characteristic curve (ROC) of several indices to 

predict binary FFR ≤0.80. 

 

AUC: area under the receiver operating characteristic curve; CI: confidence interval; CNN: 

convolutional neural network; dPR: diastolic pressure ratio; FFR: fractional flow reserve; iFR: 

instantaneous wave-free ratio; Pd/Pa: resting distal coronary pressure to aortic pressure ratio; 

RFR: relative flow reserve; RNN recurrent neural network 

 



 

Supplementary Table 1. Diagnostic performance of 16 deep learning-based architectures  

against binary FFR ≤0.80. 

 

 

*Using fivefold cross-validation.  

±: standard deviation; Acc: accuracy; CNN: convolutional neural network; conv: convolutional; GRU: 

gated recurrent unit; HR: heart rate; LSMT: long short-term memory; N/A: not applicable; NPV: 

negative predictive value; PPV: positive predictive value; RNN: recurrent neural network; ReLU: 

rectified linear unit; Sens: sensitivity; Spec: specificity 

 

 

 Neural 

network 

Hidden 

conv. 

layers 

Hidden  

RNN 

layers 

Filter 

size 

ReLU GRU 

or 

LSTM 

HR Acc* Sens* Spec* PPV* NPV

* 

1 CNN 1 N/A 60 No N/A No 0.79 

±0.03 

0.75 

±0.08 

0.83 

±0.06 

0.83 

±0.05 

0.75 

±0.07 

2 CNN 1 N/A 60 No N/A Yes 0.79 

±0.02 

0.80 

±0.03 

0.78 

±0.07 

0.80 

±0.05 

0.77 

±0.03 

3 CNN 1 N/A 60 Yes N/A No 0.76 

±0.02 

0.75 

±0.06 

0.78 

±0.04 

0.79 

±0.03 

0.73 

±0.03 

4 CNN 1 N/A 60 Yes N/A Yes 0.75 

±0.05 

0.75 

±0.06 

0.75 

±0.09 

0.78 

±0.08 

0.73 

±0.03 

5 CNN 2 N/A 30 No N/A No 0.79 

±0.02 

0.80 

±0.04 

0.78 

±0.07 

0.81 

±0.05 

0.77 

±0.04 

6 CNN 2 N/A 30 No N/A Yes 0.80 

±0.02 

0.82 

±0.03 

0.77 

±0.06 

0.81 

±0.04 

0.79 

±0.02 

7 CNN 2 N/A 30 Yes N/A No 0.71 

±0.09 

0.65 

±0.18 

0.78 

±0.11 

0.76 

±0.12 

0.67 

±0.07 

8 CNN 2 N/A 30 Yes N/A Yes 0.71 

±0.09 

0.74 

±0.08 

0.66 

±0.12 

0.72 

±0.12 

0.69 

±0.07 

9 RNN N/A 1 N/A N/A GRU No 0.78 

±0.02 

0.74 

±0.06 

0.81 

±0.06 

0.83 

±0.04 

0.73 

±0.04 

10 RNN N/A 1 N/A N/A GRU Yes 0.74 

±0.04 

0.70 

±0.09 

0.79 

±0.04 

0.79 

±0.04 

0.70 

±0.07 

11 RNN N/A 1 N/A N/A LSTM No 0.77 

±0.02 

0.74 

±0.05 

0.80 

±0.06 

0.81 

±0.03 

0.73 

±0.03 

12 RNN N/A 1 N/A N/A LSTM Yes 0.74 

±0.04 

0.71 

±0.10 

0.79 

±0.06 

0.79 

±0.05 

0.71 

±0.08 

13 RNN N/A 2 N/A N/A GRU No 0.75 

±0.03 

0.75 

±0.06 

0.76 

±0.07 

0.82 

±0.10 

0.73 

±0.04 

14 RNN N/A 2 N/A N/A GRU Yes 0.77 

±0.01 

0.81 

±0.02 

0.72 

±0.02 

0.77 

±0.02 

0.77 

±0.02 

15 RNN N/A 2 N/A N/A LSTM No 0.76 

±0.03 

0.76 

±0.06 

0.75 

±0.06 

0.78 

±0.05 

0.74 

±0.05 

16 RNN N/A 2 N/A N/A LSTM Yes 0.77 

±0.01 

0.81 

±0.02 

0.73 

±0.01 

0.77 

±0.02 

0.77 

±0.03 



 

Supplementary Table 2. Baseline characteristics.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values are mean±SD, median (IQR) or n (%) as appropriate.  

* data were not reported by the VERIFY-2 study.  

# data were not or only partially reported by the VERIFY study.  

CAD: coronary artery disease; dPR: diastolic pressure ratio; FFR: fractional flow reserve; 

iFR: instantaneous wave-free ratio; LAD: left anterior descending coronary artery; LCx: left 

circumflex coronary artery; LM: left main coronary artery; MI: myocardial infarction; RCA: 

right coronary artery; PCI: percutaneous coronary intervention; Pd/Pa: resting distal coronary 

pressure to aortic pressure ratio; RFR: relative flow reserve   

Number of subjects 1,666 

Number of lesions  1,718 

Number of pressure recordings 2,928 

Clinical  

   Age, yrs  64.6±10.1 

   Male   829/1,166 (71.1%) 

   Body mass index, kg/m2 * 27.4±4.7 

   Smoking  # 475/1,166 (40.7%) 

   Hypertension #   805/1,166 (69.0%) 

   Dyslipidaemia  # 768/1,166 (65.9%) 

   Diabetes mellitus #  300/1,166 (25.7%) 

   Family history of CAD # 384/1,166 (32.9%) 

   Previous MI #  271/960 (28.2%) 

   Previous PCI # 169/960 (17.6%) 

Artery   

   LM #   34/1,226 (2.8%) 

   LAD  # 747/1,226 (60.9%) 

   LCx  # 215/1,226 (17.5%) 

   RCA  # 230/1,226 (18.8%) 

Physiology  

   FFR  0.80 (0.72-0.86) 

   FFR ≤0.80  923/1,718 (54%)  

   Pd/Pa  0.92 (0.88-0.96) 

   dPR  0.89 (0.83-0.93) 

   RFR 0.88 (0.81-0.92) 



 

 

Supplementary Table 3. Diagnostic performance (%) of existing non-hyperaemic 

pressure ratios, using both published cut-off values and optimal cut-off in our cohort to 

predict binary FFR ≤0.80. 

 

 

 

 

Acc: accuracy; CNN: convolutional neural network; dPR: diastolic pressure ratio; FFR: fractional flow 

reserve; iFR: instantaneous wave-free ratio; NPV: negative predictive value; Pd/Pa: ratio of distal 

coronary pressure to aortic pressure; PPV: positive predictive value; RFR: relative flow reserve; RNN: 

recurrent neural network; Sens: sensitivity; Spec: specificity 

 

 

 

 

 

 

 Using published cut-off value Using optimal cut-off in this cohort to predict 

binary FFR ≤0.80 

Index Cut-

off 

Acc Sens Spec PPV NPV Cut-

off 

Acc Sens Spec PPV NPV 

Pd/Pa 0.92 79.7 77.2 82.6 83.6 75.9 0.919 79.8 76.5 83.6 84.2 75.6 

iFR 0.89 76.1 75.4 76.9 79.0 73.2 0.889 76.5 74.8 78.5 80.0 73.1 

RFR 0.89 76.4 76.1 77 79.1 73.7 0.887 77.0 81.0 72.4 77.1 76.9 

dPR 0.89 76.3 81.2 69.9 75.7 77.1 0.892 77.0 77.8 76.0 78.8 74.9 



 

Supplementary Table 4. Area under the receiver operating characteristic curve (AUC) 

to predict binary FFR ≤0.80 (compared using the DeLong method). 

 

Index 

(AUC) 

Pd/Pa 

(0.86) 
      

 

Pd/Pa 

(0.86) 
N/A 

iFR 

(0.84)  
      

 

  

  

  

  

  

iFR 

(0.84) 
<0.001 N/A 

RFR 

(0.85)  
    

 

RFR 

(0.85) 
<0.001 0.1371 N/A 

dPR 

(0.85)  
  

 

dPR 

(0.85) 
<0.001 <0.001 0.6464 N/A 

CNN 

(0.88)  

 

CNN 

(0.88) 
0.0037 <0.001 <0.001 <0.001 N/A 

RNN 

(0.84) 

RNN 

(0.84) 
<0.001 0.6375 0.3091 0.2234 <0.001 N/A  

 

AUC: area under the receiver operating characteristic curve; CNN: convolutional neural 

network; dPR: diastolic pressure ratio; FFR: fractional flow reserve; iFR: instantaneous wave-

free ratio; N/A: not applicable; Pd/Pa: resting distal coronary pressure to aortic pressure ratio; 

RFR: relative flow reserve; RNN: recurrent neural network  



 

Supplementary Table 5. Comparison of the potential advantages in design of the ARTIST study with pivotal studies on the prediction of 

FFR from resting coronary pressure curves. 

Study No. of 

patients 

No. of 

lesions 

Deep 

learning 

Designed 

to create 

new index 

 

 

Focus beyond 

distal to aortic 

pressure during a 

specific period of 

the cardiac cycle 

Potential to 

identify non-pre-

specified 

qualitative 

features 

Resting index Accuracy 

against 

binary FFR 

≤0.80 (%) 

ARTIST 1,666 1,718 + + + + 
Deep learning-

derived 

algorithm 

80% 

 

ADVISE 131 157 - + - - iFR 88% 

Johnson et al 

JACC 2013 
1,129 1,129 - - - - 

Pd/Pa 

iFR 
NA 

VERIFY [14] 706 706 - - - - iFR 60% 

VERIFY 2 

[15] 
197 257 - - - - 

Pd/Pa 

iFR 

80% 

79% 

CONTRAST 

[13]  
763 763 - - - - 

Pd/Pa 

iFR 

79% 

80% 

RESOLVE 1,768 1,593 - - - - 
Pd/Pa 

iFR 

82% 

80% 

Van ‘t Veer et 

al [7] 
197 197 - + - - Several NHPR 76-77% 

Matsumura et 

al [10] 
592 592 - + + - 

Qualitative 

parameters in 

addition to Pd/Pa 

and iFR 

NA 

Svanerud et al 
EuroIntervention 

2018 
1,137 1,305 - + - - RFR 81% 



 

Johnson et al 

EHJ 2019 
833 893 - + - - dPR NA 

 

dPR: diastolic pressure ratio; FFR: fractional flow reserve; iFR: instantaneous wave-free ratio; NHPR: non-hyperaemic pressure ratio; Pd/Pa: 

resting distal coronary pressure to aortic pressure ratio; RFR: relative flow reserve  

 

 


