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Abstract
Aims: The aim of this paper is to report a method of atherosclerotic plaque tissue characterisation based on

pattern recognition and assess its accuracy under conditions of potential clinical relevance.

Methods and results: Excised saline infused human arteries were imaged using IVUS with RF acquisition.

40% of the vessels were re-imaged with human blood infusion. A database of ~12000 image regions-of-

interest (ROIs) of histologically established types was used to design a pattern recognition algorithm to

predict the tissue type of a given ROI by comparing its RF-spectrum against the database, and also to

estimate the confidence of prediction. Ex vivo validation demonstrated accuracies at the highest level of

confidence as: 97%, 98%, 95%, and 98% for necrotic, lipidic, fibrotic and calcified regions respectively.

Good agreement with histology was shown in an in vivo swine animal model.

Conclusions: Ex vivo validation demonstrated the ability to characterise plaque tissue using an IVUS+RF

system and a method incorporating (1) full spectral information (2) spectral similarity (3) estimating

confidence of characterisation and, (4) ability to characterise plaque imaged through blood. Promising

results were demonstrated in a live animal model. This approach may have potential for accurate and

reproducible plaque characterisation in vivo.
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Introduction
Plaque rupture is the most common type of plaque complication,

accounting for around 70% of fatal acute myocardial infarctions

and/or sudden coronary deaths1. The goal of treatment of coronary

arterial disease is the prevention of acute coronary syndrome.

Intravascular ultrasound (IVUS) is commonly used in conjunction

with angiography as an assessment tool to guide treatment of

coronary arterial disease. IVUS images, in their traditional greyscale

form, significantly add to diagnostic information provided by

angiography especially in determining coronary vessel dimensions

and borders of plaques. Research initiatives in tissue

characterisation seek to develop methods that complement the

information provided by IVUS in assessing the composition of

plaques such as fibrofatty tissue, necrotic tissue and various stages

of thrombus. For example, there would be clinical value in

developing a method to distinguish between loose fibrous plaques

classified as American Heart Association (AHA) type II or III and

atheroma with a lipid core classified as AHA type IV or Va4.

Tissue characterisation methods that have been applied in the

clinical setting with some level of success deduce and present

information on tissue type using mathematical algorithms that

operate directly on greyscale or texture2,3 or by analysing the

frequency content of radiofrequency (RF) ultrasound data4,5.

This paper describes a method of tissue characterisation with the

novel element of delivering characterisation results supplemented

with a measure of confidence for each characterised component.

A statistical analysis of accuracy is included.

The process of developing an algorithm to infer tissue type from the

spectrum starts with the in vitro recording of radiofrequency signals

from a large number of samples of each tissue type of clinical interest.

A pattern recognition algorithm then looks at specially tailored “spectral

signatures” that maintain their similarity within each tissue type and

distinctness between tissue types. The goal is to characterise plaque

components on the basis of differing spectral signatures which are

caused by differences in acoustic properties of tissue which in turn

could arise from differing pathology. A tissue characterisation algorithm

is designed by modelling the tissue-induced spectral difference and

then calibrating (training) against known tissue types that have been

determined through histological analysis. A colour-coded tissue map is

then generated with the various tissue types labelled in specific colours.

Methods
The development of an IVUS tissue characterisation system

primarily involves the creation of a comprehensive set of ultrasound

signals each member of which is established to have originated

from tissue of known type. Once the database is built, mathematical

techniques are used to understand how tissue type relates to

ultrasound signal characteristics, ultimately leading to an algorithm

to predict the tissue type given the ultrasound signal. These steps

are described in this section.

Ex vivo human data collection
IVUS AND HISTOLOGY: Atlantis SR PRO® 40 MHz single-element

mechanically rotating catheters (Boston Scientific Corp, Fremont, CA,

USA) were used to acquire cross-sectional ultrasound images of

excised human arteries at a pullback speed of 0.5 mm/s and a frame

rate of 30 frames per second. The data was from twenty-five hearts

that were obtained within twenty-four hours of autopsy. After being

dissected and mounted in a tissue fixture filled with phosphate

buffered saline (PBS) at physiologic pressure, the arteries were imaged

from distal end to proximal end by an automatic catheter pullback

procedure. This procedure was repeated with human blood circulating

within the lumen at physiologic pressure. The RF data were digitised

using a two-board 12-bit Acqiris system (Acqiris, Monroe, NY, USA) at

a sampling rate of 400MHz. The RF data was catalogued and stored

for subsequent analysis. The vessel tissue samples were then fixed in

formalin and sections for histological analysis were prepared every

2 mm using standard laboratory techniques. The sections were

stained with Hemtoxylin & Eosin, and Movat Pentachrome to delineate

areas of collagen, calcifications, and lipid.

Ultimately, the available data amounted to 120 cross sections

representing left anterior descending, left circumflex, and right

coronary arteries of which 75 cross sections were imaged through

saline and 45 cross sections were imaged through blood. Care was

taken to use a number of different catheters in order to add variation

in the data.

In vivo animal data collection

DIABETES-INDUCED ATHEROSCLEROSIS: A porcine model involving

the administration of streptozotocin in conjunction with a diet high

in fat and cholesterol was used in this study to induce

atherosclerosis8. The protocol was approved by Harvard’s

Institutional Animal Care and Use Committee.

IVUS AND HISTOLOGY: Once plaque formation was established,

pullback data was acquired as described above. Coronary arteries

from the pigs were harvested and preserved at –80°C. The arteries

were frozen cut at the middle of the subsegments of interest and

cryosectioned (7 µm sections). Verhoeff’s elastin-stained

cryosections were stained with oil red O solution. Infiltration of

inflammatory cells into intima was assessed by immunostaining

using monoclonal antibody (clone 2A5, BD Biosciences Inc., San

Jose, CA, USA) against pig CD45 leukocyte common antigen.

Picrosirius red staining was applied to detect collagen types I and

III. Olympus BX41 microscope with an Olympus DP70 digital

camera was used for the digitisation of oil red O- and CD45-stained

sections, whereas picrosirius red sections were digitised by

polarisation microscopy (Nikon-Optiphot-2 microscope with Nikon

polariser lenses and Sony DFW-SX900 digital camera).

Since the amount of available in vivo animal data is limited, this

animal study was considered as a pilot to evaluate the feasibility of

applying our algorithm in vivo.

Correlating IVUS and histology

To locate the correct cutting points, two to three major readily visible side-

branches were identified on the IVUS pullbacks and used as references

for the determination of the location of the cross sections of interest. The

same branches were also identified on the harvested arteries by visual

inspection. These branches were used as landmarks to correlate

histology images and their corresponding IVUS counterparts.
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The IVUS and histology images were examined side-by-side and

regions corresponding to necrotic, lipidic, calcified, and fibrotic

tissue were marked on the IVUS image using image editing tools.

A colour-coded tissue map was then generated with the various

tissue types labelled in specific colours.

Pattern recognition
PREDICTOR: The local spectrum of the radiofrequency signal

corresponding to a location on the IVUS image was used as the

predictor of tissue type. Our use of this predictor is similar to that used

in5 with some important differences. The local spectrum was

computed by averaging the magnitude of the windowed spectrum

from 128 RF samples over five adjacent A-lines (Figure 1). These

regions-of-interest (ROIs) were uniformly distributed over all plaque

regions that could be identified. The first 32 frequency bins

representing a range of frequencies from 0 to 100 MHz were

retained. Since we wish to represent predictors originating in saline-

filled vessels and blood-filled vessels in a uniform way, the last

element of the predictor is replaced with a 0 for saline or 1 for blood.

We will continue to refer to these objects as “spectra” for simplicity. In

the final tally, a set of about 12,000 predictors along with their known

tissue type labels (classes) were available for classifier design and

accuracy assessment. This set was randomly partitioned into a

training set and a testing set containing 75% and 25% of the

predictors, respectively. The number of training and testing predictors

grouped by tissue type and lumen medium is given in Table 1.

CLASSIFIER: The basic concept invoked to infer tissue type from the

spectrum is spectral similarity. The use of this concept makes it

possible to characterise the tissue type by comparing the spectrum

Clinical research

Figure 1. Computing the local spectrum. A specific region-of-interest (ROI) on an IVUS image is shown in (a). The raw radiofrequency signals along
5 adjacent A-lines comprising this ROI are graphically represented in (b). The individual spectra corresponding to these signals are in (c). The
average of these 5 spectra yields the spectrum shown in (d). This local spectrum encodes information about the nature of the tissue within the
ROI. This is the feature used by the pattern recognition algorithm to characterise tissue within the ROI.

Table 1. The number of training and testing regions-of-interest
grouped by tissue type and medium in the lumen.

Training Testing
Saline Blood Saline Blood

Necrotic 626 350 208 116

Lipidic 542 322 180 108

Fibrotic 3458 1588 1152 530

Calcified 1063 1143 354 381

from an area on a vessel to entries in a library of spectra corresponding

to known tissue types. The comparison is made possible by means of

a mathematically defined measure of similarity between any two given

spectra (Euclidean distance). Figure 2 illustrates the process of

comparing the spectrum (grey spectrum, copied four times) from a

region of unknown type to entries in a simple library of spectra

(coloured spectra). In this example, the input spectrum is seen to be

most similar to the fibrotic entry in the library and, hence, the

corresponding ROI would be recognised as of fibrotic type.

The final form of the classifier (Figure 3) was obtained as described

below by building around this basic concept.

Basic tissue detectors: The basic units in the classifier are detectors

specifically tuned to a particular tissue type, such as the unit

labelled “Necrotic Tissue Detector #1” in Figure 3. This detector

contains a small library of spectra corresponding to necrotic and

non-necrotic tissue and, thus, has the ability to perform spectral

similarity comparisons. The library associated with this detector is

constructed such that it is more likely to output a +1 when

presented with a spectrum from necrotic tissue and a –1 when

presented with a spectrum from one of the other types. The units
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labelled “Necrotic Tissue Detector #2 through #5” contain similar

(but not identical) small libraries of spectra corresponding to

necrotic and non-necrotic tissue.

Tissue detector arrays: Using concepts of classifier combination7, it is

possible to carefully design the five basic detectors described above

so that with a high degree of certainty a weighted combination of the

five outputs rises above zero when the “array” is presented with a

spectrum from necrotic tissue, and falls below zero when presented

with a spectrum from one of the other types. Note that the output of

such an array is no longer a binary number. Rather than designing a

single necrotic detector array by utilising all available training data, it is

advantageous to design several (ten in Figure 3) necrotic detector

arrays by letting each array be built by utilising randomly selected

subsets of training data. Other tissue types are treated similarly.

Bank of tissue detector arrays: The final form of the classifier

contains a bank of several such arrays. In Figure 3, we show 40

such arrays arranged in four groups of 10. Essentially, the bank

takes an input spectrum and processes it to yield a set of 40 real

numbers. The power of the classifier bank can be appreciated by

regarding its output as a more discriminatory replacement for the

input spectrum. For example, when presented with a spectrum

from lipidic tissue, the classifier bank produces an output in which

elements 11 through 20 are stronger than others – while this simple

interpretation is not observable in the original spectrum (Figure 4).

Combiner: The final block called the “Combiner” takes in the set of

40 numbers and makes the final call on tissue type. In its simplest

form, it can accomplish this by checking which of the numbers in

the set are positive and which are negative. The final

implementation employs a simple Bayesian classifier7.

CONFIDENCE: A novel aspect of this tissue characterisation algorithm

is that it not only characterises tissue, but it also provides a measure

of the confidence for each ROI characterised. Confidence is

computed within the combiner by checking the degree of similarity

between a given 40-element bank output and ideal expected

patterns corresponding to the recognised tissue type. While the

characterised tissue type is represented as colour, the confidence is

represented as transparency with high confidence characterisations

shown with more solid colour.

Figure 2. The principle of spectral similarity. The spectrum from a
region of unknown type (grey) is shown superimposed against
representative spectra of necrotic, lipidic, fibrotic and calcified types
(coloured spectra). Clearly the grey spectrum would be recognised as
having originated from fibrotic tissue.

Figure 3. The architecture of the tissue characterisation classifier. The
basic units in the classifier are spectral similarity detectors specifically
tuned to a particular tissue type, e.g. Necrotic Tissue Detector #1.
Several of these are assembled into an array, e.g. Necrotic Tissue
Detector Array #1. The final form of the classifier contains a bank of 40
such arrays arranged in 4 groups of 10. Essentially, the bank takes in a
spectrum from an ROI and processes it to yield a mathematical entity, a
set of 40 numbers that more clearly distinguishes between tissue types.
The final block called the Combiner takes in that set of 40 numbers and
makes the final call on tissue type by checking the positions of high
numbers in the set. The Combiner also outputs a confidence estimate by
checking the degree of similarity between its input and ideal expected
patterns corresponding to the recognised tissue type.
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Ex Vivo validation
Validation of the spectral similarity algorithm was performed using a

five-step process:

1. Mean spectra were computed for ROIs of histologically

determined type

2. The spectra were randomly partitioned into test and training sets:

75% of the spectra were used for training the spectral similarity

algorithm and the remaining 25% were used as the test set

3. The spectral similarity algorithm was then used to classify the test set

4. Steps 2 and 3 were repeated four times to reduce possible bias

from the test set selection

5. The accuracy9 of the algorithm was computed by comparing the

characterisation of each sub-region against the known

histological tissue type.

Results
The bar chart in Figure 5a summarises the accuracy of ex vivo tissue

characterisation of human coronary artery infused with blood. The
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accuracy of the similarity algorithm in characterising each of the four

tissue types is shown grouped by confidence measure. For tissue

regions characterised with the highest confidence (75-100%) the

accuracy ranges from 95% to 98%. Even at the lowest confidence (0

to 25%) the accuracy is above 70%. The accuracy increases

monotonically with confidence, confirming that the confidence

measure computed by the algorithm may provide an estimate of the

probable accuracy of the classification on a pixel-by-pixel basis.

Figure 5b shows the Bland-Altman plot of expert-marked-area

versus algorithmically-determined-area of plaque components in

the same 30 frames. A Bland-Altman plot is a qualitative method of

data plotting used to graphically confirm agreement between two

different methods of measurement of the same parameter. The

uniform distribution of the points is indicative of the agreement

between the expert and the algorithm.

Figure 6 shows a conventional grey-scale IVUS image compared

with a colour-coded image characterising different tissue types in an

ex vivo section of human coronary artery infused with blood.

In vivo animal study: Using the animal data available, we were able to

qualitatively verify the correctness of the predicted tissue types. An

example is shown in Figure 7. While a quantitative comparison should

be the ultimate test of the algorithm, we have presented this result

depicting plaque types and distribution for this animal study to show that

the method broadly delivers the expected characterisation. Quantitative

results from a more carefully planned animal study are forthcoming.

Discussion
The approach to tissue characterisation described in this paper

differs significantly from other IVUS-based methods in four aspects:

FULL SPECTRUM: The characterisation uses the entire usable

spectrum from 0 to 100 MHz. While this approach involves more

mathematical calculations than algorithms using reduced or

summarised data, it increases the chances of correctly recognising

tissue type by avoiding discarding any potentially useful information.

Clinical research

Figure 4. Comparison of distinctness of spectra and classifier bank output across tissue types. The left panel shows four example spectra, one from
each tissue type. The corresponding classifier bank output on the right clearly shows each tissue type peaking in a distinct band. The dashed
horizontal line can be used to determine the band where peaking occurs and hence determine tissue type.

Figure 5a. The accuracy of the spectral similarity algorithm. For tissue
regions characterised with the highest confidence (75-100%) the
accuracy ranges from 95% to 98%.
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Figure 5b. Bland-Altman plot of expert-marked-area versus
algorithmically-determined-area of plaque components in the same 30
frames. The uniform distribution of the points in is indicative of the
agreement between the expert and the algorithm.
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Effectively, we let the entire algorithm determine the optimal use of

information in the spectrum.

SPECTRAL SIMILARITY: This approach characterises the tissue type

in a direct way by comparing the spectrum from an area on a vessel

to entries in a library of spectra corresponding to known tissue

types. By comparing spectra directly, we avoid having to infer tissue

type using secondary derived features whose discriminating

properties have not been established. Again, we let the layered

arrays of detectors adapt to the training data and determine the

optimal use of information in the spectrum.

CONFIDENCE: The method not only classifies tissue into four categories

but it also provides a measure of the confidence in the characterisation

of each region of interest. This feature is designed to distinguish

between the characterisation of two regions both being recognised as

lipidic – but with one region whose spectral properties make it slightly

closer to lipidic than necrotic, and another region whose spectral

properties are clearly those of lipidic tissue. The confidence adjusts the

transparency of colour on the characterised image.

TRAINING WITH BLOOD AND SALINE: This approach employs an

extensive library of spectra which includes data acquired from vessels

filled with blood in addition to those more conventionally obtained

from saline-filled vessels. The spectrum altering properties of blood

are well-known and the algorithm takes this into account to ensure

that the tissue characterisation system calibrated using in vitro data

will work correctly in vivo. The example in Figure 7 demonstrates that

this is indeed feasible. A more systematically designed animal study is

underway to quantify the performance of the algorithm.

The algorithm described in this paper has a number of features

intended to enhance tissue characterisation. For example, it

combines the directness and accuracy of similarity-based methods

with the ability of model-based methods to understand the training

data to classify new data (generalisation). Having a large and

diverse collection of independently designed classifiers is known to

produce a more accurate classifier. In this respect the algorithm

shares many advantages of a relatively recent class of algorithms

called random forests10. This includes the ability to train rapidly and

be stable in situations where the number of training examples varies

vastly across tissue types. This enables characterisation of new data

sets that the algorithm has not been trained on. Consider that the

algorithm works well on in vivo pig data (Figure 7) although it is

trained on ex vivo human cadaver data.

Challenges remain in developing a tissue classification algorithm with

the ability to produce consistent results in a real world clinical setting.

Anatomical variation, overlap in the acoustic properties of different

tissue types, variations in the properties of IVUS transducers, and

modifications to the information carrying signals caused by the

passage of radiofrequency waves through intervening tissue and/or

blood may lead to inconsistencies and inaccurate results.

Figure 6. A conventional grey-scale IVUS image (left) compared with a colour-coded image (centre) characterising different tissue types in an ex
vivo section of human coronary artery infused with blood. The plaque in the centre image was coloured by the automated tissue characterisation
algorithm described in this paper. This characterisation essentially conforms to that produced by histological analysis (right). The colours map to
tissue types as follows: Cyan: calcified/dense tissue, green: fibrotic tissue, yellow: lipidic tissue and magenta: necrotic tissue.

Figure 7. In vivo animal study demonstrating tissue characterisation. The accuracy of this characterisation is confirmed by the image on the right
which shows the location of important plaque components identified by an expert review of histology. Note the ability of the algorithm to reproduce
the distribution of calcified (cyan) and necrotic (magenta) tissue seen in histology. The colours map to tissue types as follows: Cyan: calcified/dense
tissue, green: fibrotic tissue, yellow: lipidic tissue and magenta: necrotic tissue. (In vivo IVUS image from porcine model, histology, and
interpretation courtesy of Yiannis S. Chatzizisis, MD, Brigham and Women’s Hospital, Boston, MA, USA)
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Of particular interest is the characterisation of tissue behind calcium

areas or within necrotic areas. The RF signal corresponding to these

areas may represent noise, leading to incorrect characterisation. To

some extent, the low confidence measure associated with these regions

may successfully prevent incorrect interpretation. While dense calcium

severely attenuates ultrasound, we have observed a characterisable

level of low frequency energy in some cases, depending on the density

and thickness of the calcium layer. One of our efforts to optimise the

algorithm will seek to label as “unknown” the problem areas such as

those occurring behind calcium and within guidewire artifacts.

Our future efforts to validate the method will involve additional ex
vivo studies, in vivo animal validation studies and eventually patient

studies involving DCA or heart transplantation.

The development of a reliable and accurate tissue characterisation

system will help efforts to classify plaques with the highest probability

of spontaneous rupture. The information obtained from tissue

characterisation in combination with an understanding of the natural

history of coronary artery disease may translate into a meaningful

treatment protocol that decreases patient morbidity and mortality.

Leading research in tissue characterisation seeks to provide new

levels of anatomical detail and new dimensions of information for the

diagnosis of disease. This work represents a step towards that goal.

Conclusions
The results of ex vivo validation have demonstrated the ability of this

spectrum based approach in characterising plaque tissue using

radiofrequency signals from a 40 MHz IVUS imaging system. The

accuracy is sufficiently high for all tissue types with a low

dependency on the medium in the lumen (saline or blood).

Promising results have been demonstrated in live animal models as

well. The approach has the potential to yield accurate and

repeatable tissue characterisation in vivo.
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