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Abstract
Background: Intravascular optical coherence tomography (IVOCT) enables detailed plaque characterisa-
tion in vivo, but visual assessment is time-consuming and subjective.
Aims: This study aimed to develop and validate an automatic framework for IVOCT plaque characterisa-
tion using artificial intelligence (AI).
Methods: IVOCT pullbacks from five international centres were analysed in a core lab, annotating basic 
plaque components, inflammatory markers and other structures. A deep convolutional network with encod-
ing-decoding architecture and pseudo-3D input was developed and trained using hybrid loss. The proposed 
network was integrated into commercial software to be externally validated on additional IVOCT pullbacks 
from three international core labs, taking the consensus among core labs as reference.
Results: Annotated images from 509 pullbacks (391 patients) were divided into 10,517 and 1,156 cross-
sections for the training and testing data sets, respectively. The Dice coefficient of the model was 0.906 
for fibrous plaque, 0.848 for calcium and 0.772 for lipid in the testing data set. Excellent agreement in 
plaque burden quantification was observed between the model and manual measurements (R2=0.98). In the 
external validation, the software correctly identified 518 out of 598 plaque regions from 300 IVOCT cross-
sections, with a diagnostic accuracy of 97.6% (95% CI: 93.4-99.3%) in fibrous plaque, 90.5% (95% CI: 
85.2-94.1%) in lipid and 88.5% (95% CI: 82.4-92.7%) in calcium. The median time required for analysis 
was 21.4 (18.6-25.0) seconds per pullback.
Conclusions: A novel AI framework for automatic plaque characterisation in IVOCT was developed, pro-
viding excellent diagnostic accuracy in both internal and external validation. This model might reduce sub-
jectivity in image interpretation and facilitate IVOCT quantification of plaque composition, with potential 
applications in research and IVOCT-guided PCI.
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Abbreviations
AI artificial intelligence
CNN convolutional neural network
DL deep learning
EEL external elastic lamina
IEL internal elastic lamina
IVOCT intravascular optical coherence tomography
IVUS intravascular ultrasound
PB plaque burden
TCFA thin-cap fibroatheroma

Introduction
Intravascular optical coherence tomography (IVOCT) enables 
detailed in vivo visualisation of atherosclerotic plaque with high 
resolution and accurate characterisation of different types of tissue 
composition1. This information is instrumental for plaque-specific 
lesion preparation and for appropriate selection of the therapeutic 
strategy during IVOCT-guided intervention2,3. However, plaque 
characterisation is currently challenging, time-consuming, difficult 
to systematise, based on subjective interpretation of the operators 
and largely dependent on their expertise, thus posing problems for 
reproducibility.

Artificial intelligence (AI) might be useful to standardise and 
automate plaque characterisation in interpreting IVOCT images. 
Deep learning (DL) is a data-driven AI algorithm to extract regu-
lar patterns from the observation of data by training a designed 
model. After training, the model learns features that can be used 
to make predictions in unexplored data sets. Convolutional neural 
network (CNN) is a specific architecture in DL that has excellent 
performance in image processing. Several studies have attempted 
automatic characterisation of atherosclerotic plaques in coronary 
arteries using CNN, following different approaches4-6.

The aim of this study was to develop a deep convolutional net-
work for comprehensive plaque characterisation, trained on a large 
diverse data set of IVOCT images comprising varied anatomic mor-
phologies and clinical scenarios, to provide both qualitative charac-
terisation and quantification of plaque components for clinical use.

Editorial, see page 18

Methods
STUDY DESIGN AND STUDY POPULATION
This was a retrospective, post hoc, multicentre, international study 
to appraise the accuracy and reproducibility of a novel diagnostic 
method for automatic plaque characterisation in IVOCT.

For the development of the CNN model, patients and lesions 
from three different IVOCT studies7-9 were included in the cur-
rent post hoc analysis. Briefly, the studies included patients 
from five international centres located in Australia, USA, Japan, 
Spain and China, in both a retrospective7,8 and a prospective 
fashion9, with IVOCT performed for the evaluation of stable 
coronary lesions. Exclusion criteria were aorta-ostial lesions, 
bypass graft lesions, patients with moderate or severe valvular 
heart disease, acute coronary syndrome <72 hours attributed to 

the imaged vessel and chronic total occlusion in any other ves-
sel. All IVOCT pullbacks were acquired with frequency-domain 
OCT systems of C7-XR™ or OPTIS™ (Abbott Vascular, Santa 
Clara, CA, USA) using a non-occlusive technique10. The institu-
tional review boards of each individual centre approved the pro-
tocol of the studies, and all patients provided informed consent 
for enrolment in the institutional database for potential future 
investigations.

For the independent external validation, a different data set of 
300 IVOCT images, provided by three international core labs, was 
used. Five patients were studied using the Lunawave® OFDI sys-
tem (Terumo Corporation, Tokyo, Japan), while the rest were stud-
ied using the frequency-domain OCT OPTIS system.

DATA ANNOTATION
Ground truth was generated by labelling nine objects by experi-
enced OCT analysts. The detailed annotation strategy is available 
in Supplementary Appendix 1.

DEEP CONVOLUTIONAL MODEL ARCHITECTURE: DESIGN 
AND TRAINING (Supplementary Appendix 2)
A U-shaped encoder–decoder architecture was designed, con-
sisting of a contracting path for high-level feature extraction, an 
expansion path to produce full resolution segmentation, and ver-
tical and horizontal feature bridges to preserve detailed spatial 
information (Supplementary Figure 1). The model was fed with 
pseudo-3D input by stacking consecutive IVOCT cross-sections 
as separate colour channels to integrate the spatial information. 
A hybrid loss function of multi-class cross-entropy loss and focal 
Tversky loss was used to address the problem of class imbal-
ance (Supplementary Appendix 3). The detailed training strategy 
and ablation experiments to test the rationale of the CNN design  
are available in Supplementary Appendix 4 and Supplementary 
Appendix 5.

MODEL DEVELOPMENT AND INTERNAL EVALUATION
The annotated pullbacks were randomly divided into training data 
set and testing data set, in a proportion of 9 to 1, strictly avoiding 
repetition of pullbacks in different data sets. The training set was 
used for the model development, of which 10% of the data set was 
separated for the hyper-parameter optimisation. After the model 
was fully developed, the testing data set was used for the inter-
nal evaluation of the model performance. The agreement between 
predictions and ground truth was evaluated by means of the Dice 
coefficient, calculated per category and then averaged over cat-
egories. The purity and completeness of positive predictions rela-
tive to the ground truths were reported as precision and recall, 
respectively.

Plaque burden (PB) was calculated as the area between the esti-
mated internal elastic lamina (IEL) contour and lumen contour, 
divided by IEL area and multiplied by 100%11. The accuracy in 
segmentation of the IEL was appraised as the agreement in PB 
between the model prediction and the ground truth.
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EXPERT CONSENSUS AND INDEPENDENT VALIDATION
The external validation of the model was performed on a different 
data set than the one used for the model development or internal 
evaluation. A total of 300 IVOCT images with different athero-
sclerotic plaque morphology and composition, acquired during 
clinical practice, were provided by three international core labs, 
each one providing 100 images (from 10 patients) with delimited 
regions (Figure 1). Regions with poor signal penetration or insuffi-
cient quality, precluding adequate visualisation and analysis, were 
flagged with an arch-shaped annotation (Figure 1, region 3). Four 
experienced OCT readers (A. Maehera, Z. Ali, H. Jia, N. Holm) 
from the three core labs (CRF, New York, NY, USA; iMcorelab, 
2nd Affiliated Hospital of Harbin Medical University, Harbin, 
China; Aarhus University Hospital, Skejby, Denmark) participated 
in the evaluation and labelled the regions with the correspond-
ing tissue components, having access to the original images but 
blinded to each of the other analysts. If the evaluator considered 
that the delimited region had more than one tissue type, the region 
was then subdivided into multiple regions. According to the evalu-
ation by the three core labs, each region was classified as “una-
nimity”, “one core lab disagrees” or “all three core labs disagree”. 
Supplementary Figure 2 shows representative cases with unanim-
ity and disagreement among core labs. Consensus was defined as 
agreement between ≥2 core labs, i.e., first two categories of the 
classification, and the consensus label for the region was accepted 
as reference for the independent validation.

The proposed deep convolutional model was integrated into the 
OctPlus software (Pulse Medical Imaging Technology, Shanghai, 
China) for real-time analysis of IVOCT pullbacks (Figure 2), 
displaying plaques in both 2D cross-sectional and 3D views 
(Figure 2A). The software quantified plaque area, arc degree 
and the different tissue proportions. An independent validation 
of the proposed CNN model within the software was performed, 
using the consensus regions as reference. Given that some plaque 
regions were flagged by arch-shaped annotations without com-
plete boundaries, pixel-wise evaluation by Dice coefficient was 

not applicable for the external validation. Model performance was 
reported by the means of accuracy. Correct plaque characterisation 
was defined as a >80% overlapping portion between the predic-
tion of the software and the core lab consensus in area or arc cir-
cumference. Sensitivity analysis on the impact of the overlapping 
portion on the diagnostic accuracy was performed by changing the 
overlapping portion from 80% to 90%.

STATISTICAL ANALYSIS
A normality test was performed using the Shapiro-Wilk test. 
Continuous variables are presented as mean±SD or median (inter-
quartile range), as appropriate, whereas categorical variables are 
presented as counts and percentages. Correlation between ground 
truth and model predictions was evaluated using Pearson or 
Spearman correlation tests, as appropriate. Agreement between 
groups for continuous variables was assessed by means of Bland-
Altman analysis and intraclass correlation coefficient for the abso-
lute agreement (ICCa), whilst the kappa coefficient was used for 
categorical variables. A two-sided p-value ≤0.05 was considered 
statistically significant. A confidence level of 95% (95% CI) was 
used to estimate the plausible range of values. Statistical analysis 
was performed using SPSS, Version 23.0 (IBM Corp., Armonk, 
NY, USA).

Results
STUDY POPULATION CHARACTERISTICS
A total of 509 OCT pullbacks from 391 patients were analysed, 
resulting in 10,517 and 1,156 cross-sections for the training and 
testing data sets, respectively (Figure 3). Patient baseline clinical 
characteristics are presented in Table 1.

INTERNAL EVALUATION
The model performance on the testing data set is summarised in 
Table 2. The model performed the best segmentation on fibrous 
plaque (Dice=0.906), followed by calcific (Dice=0.848) and 
lipidic plaque (Dice=0.772). For the segmentation of markers 

All plaques 80.8% 18.2% 1.0%

16.2%Fibrous plaque 83.8%

Lipid pool 73.7% 26.3%

Calcification 85.9% 14.1%

Macrophages 81.8% 18.2%
Cholesterol

crystal 100%

All 3 agree
1 disagrees
All 3 different

0 100 200 300 400 500 600

Region number

Example of OCT image 
with delineated regions

Regions: 1. fibrous
 2. calcium
 3. lipid
 4. calcium
 5. macrophages

Figure 1. Inter-core lab agreement and variability on plaque characterisation. Example of an IVOCT image with delimited regions (marked by 
numbers) and results of plaque characterisation, stratified by the different tissue components, as determined by the three core labs. There is 
good agreement for the majority of calls, since all three or at least two core labs agreed on the diagnosis.
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Fibrous 163 (97.6%) 4 (2.4%)

Lipidic 162 (90.5%) 17 (9.5%)

Calcium 138 (88.5%) 18 (11.5%)

Macrophages 37 (48.1%) 40 (51.9%)

Cholesterol
crystals

18
(94.7%) 1 (5.3%)

Region number

Correct Incorrect

All regions 80
(13.4%)

518
(86.6%)

0 40 80 120 160 200

A

B

Figure 2. The proposed AI model was integrated into the OctPlus software and externally validated. A) Screen shot of plaque quantitative 
assessments by the software. 3D mapping of calcifications between IEL (white arrow) and lumen contour (red arrow) is shown on the right 
side. B) Diagnostic accuracy of the software, stratified by the different plaque components, taking the inter-core lab consensus as standard 
reference. AI: artificial intelligence; IEL: internal elastic lamina

Model development and internal evaluation

Annotation in the core lab
N=11,673

509 IVOCT pullbacks from 391 patients
(5 international centres)

Training data set (90%): N=10,517
AI model training & hyperparameter tuning

Testing data set (10%): N=1,156
Internal evaluation metric: Dice coefficient

Integrate the AI model
into commercial software

External validation

Each frame was independently
labelled by all 3 core labs

Comparing the three labels
for every region

Regions agreed by consensus: N=598
Agreement between ≥2 core labs

300 frames IVOCT from 30 patients
(provided by 3 core labs)

604 tissue regions from 45 lesions

“unanimity”
N=488

“1 disagrees”
N=110

“3 different”
N=6

External evaluation metric: accuracy of the AI
model, using expert consensus as reference

Figure 3. Study flow chart. The utility of the different data sets for internal evaluation (left column) and external validation (right column) is 
indicated.
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of inflammation/complicated plaque, the model performed best 
on microvessels (Dice=0.601), followed by cholesterol crys-
tals (Dice=0.525) and macrophages (Dice=0.489). Segmentation 
of non-tissue structures (i.e., guidewire and side branches) also 
achieved high performance (Table 2). Among quantitative para-
meters, the PB assessed by the model correlated very well with 
the ground truth (R2=0.98, p<0.001) (Figure 4), with a mean dif-
ference of 0.35±2.2% and an ICCa of 0.99 (95% CI: 0.98-0.99).

Figure 5 shows examples of the model predictions in different 
challenging scenarios. The model had excellent performance on 

cases with insufficient blood clearance (row A), complex calcifi-
cation (row B) or large lipidic burden (row C), while displaying 
certain ability in segmenting different inflammatory markers, like 
cholesterol crystals, macrophages or microvessels (row D).

INTER-CORE LAB AGREEMENT AND VARIABILITY IN 
PLAQUE CHARACTERISATION
For the external validation, a total of 45 lesions, including 10 long 
lesions (>28 mm) and 6 diffuse lesions from the 30 IVOCT exam-
inations were analysed, resulting in 604 plaque regions labelled 
by the core labs (Figure 3). The median lesion length and minimal 
lumen area of the lesions were 20.40 (10.90-33.05) mm and 2.00 
(1.36-3.00) mm2, respectively. Consensus on plaque characteri-
sation was reached in 598 (99% [95% CI: 97.8-99.6%]) regions 
(Figure 1); unanimity among core labs was observed in 488 (81% 
[95% CI: 77.5-83.7%]) regions, and agreement between two core 
labs in 110 (18% [95% CI: 15.3-21.5%]) regions. Unanimity 

Table 1. Baseline clinical characteristics.

Patients (N=391) 
Age, years 66.4±10.7

Male 298 (76.2%)

BMI, kg/m2 25.9±5.0

Diabetes mellitus 158 (40.4%)

Hypertension 311 (79.5%)

Hyperlipidaemia 265 (67.8%)

Current smoker 100 (25.6%)

Family history of CAD 78 (20.5%)

Previous PCI 220 (56.3%)

Previous CABG 6 (1.5%)

Previous MI 156 (39.9%)

Clinical presentation
Silent ischaemia 128 (32.7%)

Stable angina 118 (30.2%)

Unstable angina 67 (17.1%)

NSTEMI 14 (3.6%)

Other 64 (16.4%)

Data are presented as mean±SD, median (Q1-Q2), or n (%), as 
appropriate. BMI: body mass index; CABG: coronary artery bypass graft; 
CAD: coronary artery disease; MI: myocardial infarction; NSTEMI: 
non-ST-elevation myocardial infarction; PCI: percutaneous coronary 
intervention

Table 2. Segmentation performance of the proposed model on the 
testing data set.

Precision Recall Dice

Plaques Fibrous 0.932 0.881 0.906

Lipidic 0.739 0.807 0.772

Calcific 0.811 0.888 0.848

Markers of 
complicated 
plaque

Cholesterol 
crystals 0.543 0.508 0.525

Macrophage 0.429 0.568 0.489

Microvessel 0.598 0.604 0.601

Other 
structures

Guidewire 
artefact 0.870 0.920 0.894

Side branch 0.815 0.890 0.851

IEL 0.989 0.989 0.989

Mean 0.747 0.784 0.764

IEL: internal elastic lamina
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Figure 4. Agreement of plaque burden (PB) between AI predictions and manual annotations. A) Correlation in PB between model prediction 
and ground truth. B) Bland-Altman analysis. Middle blue line: mean difference; red dotted lines: mean±1.96 SD. PB: plaque burden
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among core labs was most frequently observed for cholesterol 
crystals (100% [95% CI: 82.4-100%]), followed by calcific plaque 
(85.9% [95% CI: 79.5-90.6%]), fibrous plaque (83.8% [95% CI: 
77.5-88.7%]), macrophages (81.8% [95% CI: 71.6-88.9%]), and 
lipidic plaque (73.7% [95% CI: 66.8-79.7%]). The data on agree-
ment between individual core labs with consensus are available in 
Supplementary Appendix 6 and Supplementary Figure 3.

EXTERNAL VALIDATION
In the external validation, the software correctly segmented and 
characterised 518 out of 598 regions agreed by consensus, cor-
responding to an overall diagnostic accuracy of 86.6% (95% CI: 

83.7-89.1%). The software performed the best in fibrous plaque 
(accuracy 97.6% [95% CI: 93.4-99.3%]), followed by lipidic 
plaque (90.5% [95% CI: 85.2-94.1%]) and calcifications (88.5% 
[95% CI: 82.4-92.7%]). Cholesterol crystals were also well char-
acterised (accuracy 94.7% [95% CI: 73.5-100%]), but the per-
formance for macrophages was suboptimal (48.1% [95% CI: 
37.3-59.0%]) (Figure 2B). The overall diagnostic accuracy was 
numerically higher in unanimous regions where all three core 
labs agreed than in those regions where only two core labs 
agreed: 89.7% (95% CI: 86.7-92.2%) versus 72.7% (95% CI: 
63.7-80.2%), p<0.001. When the threshold of overlapping area to 
define a correct characterisation between the software prediction 

Image Manual annotation AI prediction

A

B

C

D

Fibrous/intimal Lipid Calcium Macrophage Cholesterol crystal

Side branch Guidewire

Figure 5. Segmentation in different challenging situations. Images with suboptimal quality (A), heavy calcification (B), plaques with large 
lipidic pool (more than two quadrants) (C), inflammatory markers (D).
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and the consensus increased from 80% to 90%, diagnostic accu-
racy decreased slightly but remained high, with 96.4% (95% CI: 
92.2-98.5%) for fibrous plaque, 87.2% (95% CI: 81.4-91.3%) for 
lipidic plaque, and 85.9% (95% CI: 79.5-90.6%) for calcifications.

The diagnostic accuracy was similar in both OCT systems for 
basic plaque components, 91.9% (95% CI: 88.9-94.2%) in Abbott 
versus 94.2% (95% CI: 85.6-98.2%) in Terumo (p=0.63), and for 
all tissue regions 87.5% (95% CI: 84.3-90.1%) in Abbott versus 
81.8% (95% CI: 72.4-88.6%) in Terumo (p=0.17).

MODEL RATIONALE AND ANALYSIS TIME
Systematic ablation experiments using the testing data set veri-
fied the rationale in the design of the deep convolutional model, 
including pseudo-3D input, vertical feature bridges, and hybrid 
loss (Supplementary Table 1).

The median time required for the CNN model to analyse an 
image pullback with 271 (263-375) cross-sections of 704×704 
pixel size was 21.4 (18.6-25.0) seconds, corresponding to an aver-
age speed of 0.07±0.01 seconds per cross-section using a laptop 
equipped with AMD Ryzen 7 and Geforce RTX 2060 graphic card.

Discussion
The following points summarise the key findings of the present 
study. 1) An AI model based on a deep convolutional neural net-
work for automatic IVOCT plaque characterisation was developed 
and validated, proving fast computational speed and excellent per-
formance in a real-world series of images. 2) Consensus on coro-
nary tissue characterisation using OCT could be achieved in most 
of the plaque regions among the three core labs, 81% with una-
nimity among three core labs and 18% with agreement between 
two core labs. 3) The AI model performed the best in fibrous 
plaque, followed by lipidic plaque and calcifications, with diag-
nostic accuracy of 97.6%, 90.5% and 88.5%, respectively. 4) The 
plaque burden automatically assessed by the AI model correlated 
well with the core lab analysis (R2=0.98, p<0.001).

Several studies have previously attempted the automatic charac-
terisation of atherosclerotic plaque on IVOCT using AI4,5. However, 
these studies developed their models on relatively small data sets 
with limited diversity, thus entailing problems of generalisability 
for clinical use. Furthermore, most of these models were validated 
pursuant to internal analysis within the team, lacking an independ-
ent external assessment based on expert consensus. Additionally, 
the a priori knowledge of spatial continuity along adjacent frames 
had not been fully exploited and only a few tissue components 
had been qualitatively characterised hitherto, with limited quan-
tification. In addition to intravascular imaging, the applications 
of AI in the field of plaque characterisation using cardiac com-
puted tomography (CT) are also expanding. Multiple approaches 
including machine learning and CNN models have been proposed 
for automatic calcium detection and scoring using CT images12,13.

From a technical point of view, this novel AI model is unique 
in many aspects, including the integration of spatial information 
from contiguous cross-sections to enhance the diagnostic accuracy 

by means of pseudo-3D input, the incorporation of multi-scale fea-
ture forward bridges in both horizontal and vertical directions for 
better fusion of features, and the use of a hybrid loss function to 
address challenges in segmentation of inflammatory markers. The 
rationale for the design of this model was verified on the test-
ing data set (Supplementary Table 1). It is important to note that 
the average analysis speed for the model is 0.07±0.01 seconds per 
cross-section while it took the analysts several minutes to anno-
tate one frame in the core lab. It would be more time-demanding 
for images with complex plaque compositions or suboptimal qual-
ity since the specialists need to evaluate cross-sections from sev-
eral adjacent imaging slices while the model rapidly integrated the 
information of spatial continuity across frames.

The development of the AI model was focused on clinical appli-
cations. In this regard it is important to highlight that the model 
was trained and validated with a large volume of IVOCT images, 
encompassing a range of image quality, plaque composition and 
lesion complexity in a representative population with ischaemic 
heart disease. This characteristic of the training data set is crucial 
to guarantee the generalisability of the CNN model. Furthermore, 
the external validity of the study was retested against a high-qual-
ity reference standard, the consensus of three leading international 
core labs, with excellent diagnostic concordance achieved for 
most plaque types. Although the data set for external validation 
was modest in size, it was of different complexity and sufficient to 
assess the external validity of our findings.

The AI model performed very well in the segmentation of basic 
plaque components in both internal evaluation and external vali-
dation, while the diagnostic accuracy was only modest for mark-
ers of high risk and complex plaques. In both categories, the 
agreement with the expert consensus was better in structures with 
low versus high attenuation, i.e., the model was more accurate 
in fibrous than in lipidic tissue, and more accurate in cholesterol 
crystals than in macrophages. These findings will require a spe-
cific appraisal in future studies but might be partially explained 
by the agreement between the experts in the different categories. 
The experts tended to disagree the most in structures with high 
attenuation (lipidic pools, macrophages) or in regions lying very 
abluminally, where the signal was poor, the quality of the image 
was lower and therefore the subjective interpretation of the ana-
lyst played a greater role. Indeed, the AI model performed signi-
ficantly better in regions with unanimity than in regions without 
unanimity (89.7% vs 72.7%, p<0.001).

Of note, the accuracy of the AI model in identifying lipidic plaques 
(90.5%) was slightly higher than in calcified plaques (88.5%) in the 
external validation. This was because some lipidic plaques with 
poor signal penetration, precluding adequate visualisation of bound-
aries, were flagged with an arch-shaped annotation, which reduced 
the difficulty for the AI model to meet the standards compared to 
the calcium plaques delineated with complete boundaries. The accu-
racy in identifying cholesterol crystals was excellent in the exter-
nal validation while segmentation performance was modest in the 
internal testing data set. This might be explained by the small area 
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occupied by cholesterol crystals; a small change in the segmenta-
tion border would impact significantly on the Dice index, while pre-
serving good agreement in tissue characterisation. Nevertheless, the 
model might require further fine-tuning to improve its performance 
in categories such as macrophages.

To the best of our knowledge, this is the first IVOCT study to 
report the reproducibility of outlining the IEL. This was a chal-
lenging task for IVOCT, because the media often lies beyond 
IVOCT penetration in thick plaques or is hidden behind lipid-rich 
pools, causing intense attenuation of the signal1. Nevertheless, 
recent studies have proven that IVOCT analysts can identify the 
external elastic lamina (EEL) at >180º of the circumference in 
95% of the cross-sections in a core lab setting14. Thus, considering 
the circular geometry of the arterial structures in the cross-section 

and the information from continuous frames, the invisible part of 
IEL and EEL can be reliably extrapolated. As shown in Figure 6, 
the predicted IEL by our proposed model shows good concord-
ance with an adjacent reference cross-section, even in lesions with 
a large lipidic pool. This is a key step forward for the quantitative 
assessment of atherosclerosis by means of IVOCT, with potential 
prognostic implications, as plaque burden is an independent pre-
dictor of future events in non-culprit coronary lesions15.

Plaque composition also has prognostic value, as large lipidic 
burden and thin-cap fibroatheroma (TCFA) are associated with 
higher incidence of periprocedural myocardial infarction16. The 
current AI model provides comprehensive in vivo analysis of 
atherosclerotic plaque composition and morphological features of 
plaque progression or instability in a fully automated fashion, thus 

Target frame AI prediction Reference frame

A

B

C

D

Figure 6. Predicted IEL by AI model shows good concordance with reference cross-section in plaques with small (A), medium (B, C) and large 
lipidic pool (D). IEL: internal elastic lamina
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providing interventional cardiologists, irrespective of their imag-
ing expertise, with the same level of proficiency as top imaging 
experts, while sparing time and weariness. The CLIMA trial has 
recently shown that the identification of macrophages, together 
with other vulnerable plaque features on OCT, has prognostic 
value in predicting the population at high risk of acute events17. 
The AI model is able to identify inflammatory markers automat-
ically along the entire IVOCT pullback rather than in a small 
region of interest, thus providing a more comprehensive assess-
ment that might potentially result in better risk stratification than 
conventional image interpretation.

Limitations
This was a study to validate an AI model of automatic segmen-
tation and characterisation of plaque composition, based on the 
consensus of IVOCT experts. It does not intend to provide a his-
tological validation of IVOCT for plaque characterisation, which 
has already been achieved18. Of note, histological validation in 
humans can only be performed by autopsy in cadavers, in patients 
who died from acute cardiac events. Obtaining histological data 
from stable coronary lesions in patients dying from non-cardiac 
causes has proven problematic.

Considering the potential clinical and research applications of 
the model, the study focused on stable atherosclerotic plaques, 
excluding lesions with signs of instability (thrombus, plaque 
rupture, dissection or haematoma). In addition, the presence of 
metallic stents generates dark trailing shadows on OCT images, 
jeopardising the interpretation of plaque composition. Thus, cross-
sectional images at the stented segment were excluded from the 
present analysis. The results of the model in unstable plaques and 
in stented vessel segments should be interpreted with caution and 
would require further investigation in specific studies.

Conclusions
A novel AI framework for automatic plaque characterisation in 
IVOCT was developed, providing excellent diagnostic accuracy 
in both internal and external validation. This model might reduce 
subjectivity in image interpretation and facilitate IVOCT quan-
tification of plaque composition, with potential applications in 
research and IVOCT-guided PCI.

Impact on daily practice
An AI-based model was developed and validated for automatic 
plaque characterisation on IVOCT. This substantially improved 
the objectivity and reproducibility of IVOCT quantification. 
The AI model enables comprehensive plaque characterisation 
and identification of inflammatory markers, creating an inter-
esting perspective for future studies on plaque progression and 
risk stratification. The model has the potential to assist IVOCT-
guided PCI by tailoring the intervention according to plaque 
composition and by using internal elastic lamina as reference 
for stent sizing.
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Supplementary data 

Supplementary Appendix 1. Data annotation strategy 

Ground truth was generated by labelling the plaque components in cross-sections at 2 

mm longitudinal intervals in the IVOCT pullbacks. Annotation was manually 

performed by experienced OCT analysts (M. Chu, X. Zeng and M. Zeng), trained and 

regularly audited in a core laboratory (CardHemo, Med-X Research Institute, 

Shanghai Jiao Tong University, Shanghai, China). Lumen contours and internal elastic 

lamina (IEL) were outlined, and tissues in between were classified as (a) non-tissue 

parts: guidewire artefacts or side branches; (b) plaque components: fibrous tissue, 

lipidic pool or calcium; (c) markers of plaque instability and inflammation: 

macrophages, cholesterol crystals or microvessels. When several plaque components 

were observed in the same cross-section, each component was delineated separately. 

Cross-sections with plaque rupture, thrombus, stent struts, or insufficient quality were 

excluded from the analysis. Sectors with normal intima were annotated as fibrous 

tissue. All annotations were verified by an OCT specialist (L. He), who has clinically 

interpreted more than 2,000 OCT pullbacks under the supervision of a senior 

cardiologist (H. Jia). The annotated pullbacks were randomly divided into training set 

and testing set, in a proportion of 9 to 1, strictly avoiding repetition of pullbacks in 

different data sets.   

 

 

Supplementary Appendix 2. Deep convolutional model architectures  

The model followed a U-shaped encoder–decoder architecture composed of 

contracting path, expansion path, vertical and horizontal feature bridges 

(Supplementary Figure 1). The encoder path consisted of repeated applications of a 

convolutional module, comprising two 3x3 convolution layers for feature extraction, 

each followed by a non-linear activation (ReLu). Adjacent convolutional modules 

were connecting by means of a 2x2 max pooling operation for down-sampling and a 

batch normalisation layer. In the decoder path, the feature maps were up-sampled 

through a symmetric structure with the contracting path by repetition of the 

convolutional module and up-sampling operations to produce a full-resolution 

segmentation. Compared to the standard U-net model, the proposed model had 

superior depth of network and less feature maps at the corresponding module by a 

factor of ½, resulting in a deeper and thinner model. In addition to the horizontal 

shortcuts between contracting and expansion layers as in U-net, the encoding path 

also incorporated vertical feature bridges that forward high-resolution local features of 

the input to deeper convolutional modules at multi-scales. At the final layer, a 1x1 

convolution and softmax function was used to generate multi-class probability maps.  



 

 

Of note, the model feeds a 2D CNN model with a stack of consecutive IVOCT cross-

sections as pseudo-3D input, to integrate the spatial information in the longitudinal 

direction and produce the segmentation of the central frame. Furthermore, the vertical 

feature bridges forward the local spatial information of pseudo-3D images to deeper 

layers at multi-scales, thus refining the segmentation results by means of recovering 

the spatial details lost in the aggressive down-sampling at the encoding path. 

 

 

Supplementary Appendix 3. Proposed hybrid loss 

The segmentation of macrophages, cholesterol crystals and microvessels was 

technically difficult because they were small in size and infrequent, causing severe 

class imbalance when the model also needs to segment other plaque components. 

Objects of rare classes have negligible weight in the loss function, resulting in biased 

models with high false negativity. Special loss functions have been proposed to 

circumvent this problem. Focal loss forces the model to learn the poorly classified 

pixels better, focusing on challenging, misclassified examples. Focal loss was initially 

introduced for detection tasks, rather than for segmentation. Dice loss (the negative of 

Dice coefficient) was initially used as loss function for volumetric segmentation of 

medical images. It can partially address the problem of data imbalance by turning 

pixel-wise loss composition (every pixel contributes to the loss) into class-level 

distribution distance (loss is calculated at a category level). Tversky loss is a 

generalisation of Dice loss, able to tune trade-offs between false positives and false 

negatives, but segmentations based on class-level loss alone may result in rough 

borders. In order to address the class imbalance problem and stabilise the training 

process, a combination of multi-class cross-entropy loss (Equation 1) and focal 

Tversky loss (Equation 2) was proposed in the current study. Similar to focal loss, 

focal Tversky loss was derived from Tversky score and underweights the contribution 

of easy categories to the loss during the training, focusing on challenging categories.  

 𝐿𝑜𝑠𝑠𝐶𝐸 =  −1

𝑁
∑ ∑  𝑔𝑛𝑐 𝑙𝑜𝑔  𝑝𝑛𝑐 𝑁

𝑛=1
𝐶
𝑐=1                 (Equation 1) 

  𝐿𝑜𝑠𝑠𝐹𝑇 =  ∑ (1 −
 𝑇𝑃𝑐

 𝑇𝑃𝑐+𝛼 · 𝐹𝑁𝑐+𝛽 · 𝐹𝑃𝑐
)

𝛾
𝐶
𝑐=1           (Equation 2) 

𝐿𝑜𝑠𝑠 =  λ𝐿𝑜𝑠𝑠𝐶𝐸 + 𝐿𝑜𝑠𝑠𝐹𝑇                    (Equation 3) 

In the equations, C represents the total categories, N the image pixel numbers,  𝑝𝑛𝑐 

and  𝑔𝑛𝑐 are the predicted possibility and ground truth value for pixel n of category 

c;  𝑇𝑃𝑐,  𝐹𝑁𝑐 and  𝐹𝑃𝑐 are true positives, false negatives and false positives of 

predictions for category c; α and β are the trade-offs of penalties for false negatives 

and false positives. Hyper-parameter γ focuses the model on poorly performed 



 

categories and was set to 0.75, while λ is a magnitude balance between focal Tversky 

loss and cross-entropy loss, which was set as 10 in this study.  

 

 

Supplementary Appendix 4. Training of the deep convolutional model 

OCT images were converted to greyscale prior to the training and validation process. 

The annotated cross-section and the immediately adjacent ones, together with their 

lumen images, were stacked and fed into the model as input. Tailored data 

augmentation was performed on-the-fly, involving random rotation, scale, panning, 

vertical and horizontal flip. A total of 250 epochs were performed using the Adam 

optimiser.  

 

 

Supplementary Appendix 5. Ablation experiments 

Systematic ablation experiments were carried out on the testing data set to prove the 

rationale behind the design of the deep convolutional model, comparing: 1) pseudo-

3D input with different numbers of stacked frames versus single 2D cross-sectional 

input; 2) models with versus without vertical feature bridges; 3) the proposed hybrid 

loss (Equation 3) versus multi-class cross-entropy loss. 

 

The results of the ablation study are summarised in Supplementary Table 1. Pseudo-

3D input with consecutive images outperformed single cross-sectional 2D input. The 

evaluation metrics gradually improved in parallel to the number of stacked cross-

sections up to a point (7-9 cross-sections) and then decreased. The addition of vertical 

feature bridges further improved the segmentation precision to 0.817 but showed 

relatively low recall value of 0.650. The adoption of the hybrid loss addressed this 

issue by tuning trade-offs between false negatives and false positives, achieving 

relatively balanced precision and recall.  

 

 

Supplementary Appendix 6. Inter-core lab agreement and variability in plaque 

characterisation 

Supplementary Figure 2 shows representative cases with unanimity and 

disagreement among core labs. Supplementary Figure 3 shows the distributions of 

the different plaque components in the different core labs. Kappa coefficients for the 

different core labs, taking the consensus as reference, were 0.89 (95% CI: 0.86-0.92, 

p<0.001), 0.96 (95% CI: 0.94-0.98, p<0.001), and 0.88 (95% CI: 0.85-0.91, p<0.001).   

  



 

 

 

Supplementary Figure 1. Schematic diagram of the model architecture.  

The proposed model architecture consists of encoder path, decoder path, and vertical 

and horizontal feature bridges. Numbers next to the convolution module represent the 

size of feature maps, where the number after the symbol @ denotes the channels of 

feature maps, while the number before the symbol denotes the size relative to the 

input image. 

  



 

 

 

 

Supplementary Figure 2. Cases of plaque characterisation by core labs in the external 

validation data set.  

A) Unanimity achieved in the three core labs.  

B) Invisibility of media layer underlying thick fibrous cap evoked the controversy over 

the existence of lipid. 

C) Atypically attenuated deposition confused the diagnosis. 

  



 

 

 

Supplementary Figure 3. Consensus on plaque tissue types and agreement by the three 

core labs. 

 

  



 

Supplementary Table 1. Ablation study results of all regions on the testing data 

set. 

Feature  

bridges 

Consecutive  

frames 

Loss 

function 

Average 

precision 

Average 

recall 

Average 

Dice 
 

1 CEL 0.726 0.643 0.668 
 

3 CEL 0.731 0.637 0.663 
 

5 CEL 0.767 0.644 0.678 

Horizontal  7 CEL 0.765 0.669 0.700 
 

9 CEL 0.778 0.653 0.686 
 

11 CEL 0.747 0.643 0.671 
 

13 CEL 0.708 0.651 0.669 

Horizontal  7 Combined 0.722  0.716  0.713  

Horizontal+vertical 7 CEL 0.817 0.650 0.686 

Horizontal+vertical 7 Combined 0.747 0.784 0.764 

CEL: cross-entropy loss 

 

 


