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Abstract
Background: In recent years, the use of deep learning has become more commonplace in the biomedical 
field and its development will greatly assist clinical and imaging data interpretation. Most existing machine 
learning methods for coronary angiography analysis are limited to a single aspect.
Aims: We aimed to achieve an automatic and multimodal analysis to recognise and quantify coronary 
angiography, integrating multiple aspects, including the identification of coronary artery segments and the 
recognition of lesion morphology.
Methods: A data set of 20,612 angiograms was retrospectively collected, among which 13,373 angiograms 
were labelled with coronary artery segments, and 7,239 were labelled with special lesion morphology. 
Trained and optimised by these labelled data, one network recognised 20 different segments of coronary 
arteries, while the other detected lesion morphology, including measures of lesion diameter stenosis as well 
as calcification, thrombosis, total occlusion, and dissection detections in an input angiogram.
Results: For segment prediction, the recognition accuracy was 98.4%, and the recognition sensitivity was 
85.2%. For detecting lesion morphologies including stenotic lesion, total occlusion, calcification, thrombo-
sis, and dissection, the F1 scores were 0.829, 0.810, 0.802, 0.823, and 0.854, respectively. Only two sec-
onds were needed for the automatic recognition.
Conclusions: Our deep learning architecture automatically provides a coronary diagnostic map by inte-
grating multiple aspects. This helps cardiologists to flag and diagnose lesion severity and morphology dur-
ing the intervention.
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Abbreviations
AI artificial intelligence
CVD cardiovascular diseases
DNN deep neural networks
LAD left anterior descending
LCX left circumflex artery
LM left main
OM obtuse marginal
RCA right coronary artery
TO total occlusion

Introduction
Coronary artery disease (CAD) is the most common cardiovascular 
disease1, and the leading cause of death globally during the past 
two decades2. Therefore, the diagnosis and prevention of CAD is 
crucial for modern society. Coronary angiography (CAG), which 
provides assessments of luminal stenosis, plaque characteristics, 
and disease activity, is an important tool for CAD diagnosis and 
treatment guidance3,4. In recent years, the use of deep learning has 
become more commonplace in the biomedical field and its develop-
ment will greatly assist clinical and imaging data interpretation5. 
Deep learning can simplify the procedure by directly learning pre-
dictive features, thereby strongly supporting the translation from 
artificial algorithms into clinical application6-8. However, much of 
the previous work to apply deep learning algorithms in the field of 
CAD has focused on single aspects of the analysis of the coronary 
artery, such as vessel segmentation9,10, coronary artery centreline 
extraction11, noise reduction12, coronary artery geometry synthesis13, 
coronary plaque characterisation14, and calcification detection. Thus, 
there remains a large gap between the results produced by the afore-
mentioned algorithms and the actual diagnosis of CAD.

High diagnostic accuracy from a coronary angiogram requires 
correct recognition of lesion morphology and location. Herein, to 
tackle the above recognition tasks, two unique functional deep neu-
ral networks (DNN) were proposed, on which we created, trained, 
validated, and then tested a coronary angiography recognition sys-
tem called DeepDiscern. DeepDiscern was evaluated on a test data 
set of consecutive angiograms collected from clinical cases.

Editorial, see page 16

Methods
STUDY POPULATION AND IMAGE ACQUISITION
To develop the DeepDiscern system, 20,612 angiograms from 
10,073 patients were consecutively collected using the image 
acquisition data from a large single centre (Fu Wai Hospital, 
National Center for Cardiovascular Diseases, Beijing, China). For 
coronary segmentation DNN training, 13,373 angiograms were 
consecutively collected from 2,834 patients who underwent CAGs 
in July 2018. The remaining 7,239 angiograms, with at least one 
identifiable lesion morphology, such as stenotic lesion, total occlu-
sion (TO), calcification, thrombus, and dissection, collected from 
7,239 patients, were used for lesion morphology recognition. The 
collected angiogram information is listed in Table 1.

Raw angiographic data for our work were acquired during inter-
ventional procedures of patients and saved in 512×512-pixel dig-
ital imaging and communications in medicine (DICOM) format 
with angiographic views and video information, without patient 
identifiers. Each patient’s angiographic DICOM included sev-
eral angiographic sequences encompassing different angiographic 
views. The choice of angiographic views was left to the opera-
tor’s discretion, to delineate best the lesion severity and morpho-
logy. In general, the angiographic views for the left coronary 
artery included CRA (cranial view), CAU (caudal view), LAO_
CRA (left anterior oblique-cranial view), LAO_CAU (left anterior 
oblique-caudal view), RAO_CRA (right anterior oblique-cranial 
view), and RAO_CAU (right anterior oblique-caudal view). For 
the right coronary artery the views included LAO, LAO_CAU, 
LAO_CRA and RAO. The data flow is presented in Figure 1.

Table 1. Baseline patient and lesion characteristics.

Coronary artery recognition

Patients (N=2,834)
Age, years 61.6±17.5

Female 29.9% (848)

Left dominance 24.1% (683)

Segmentation (N=13,373)*
LM 77.7% (10,390)

LAD 64.2% (8,594)

DIA 51.3% (6,854)

LCX 36.6% (4,890)

OM 36.6% (4,890)

L-PLA 36.6% (4,890)

L-PDA 36.6% (4,890)

RCA 22.3% (2,983)

PDA 22.3% (2,983)

PLA 22.3% (2,983)

Lesion morphology detection

Patients (N=7,239)
Age, years 65.5±16.0

Female 20.9% (1,513)

Left dominance 22.8% (1,650)

Lesion morphology (N=12,184)†

Stenosis (DS ≥50%) 22.2% (2,700)

Total occlusion 36.6% (4,458)

Lesion bending >45° 44.2% (1,970)

Lesion length 17.6±13.2

≥20 mm 24.2% (1,079)

Blunt stump 37.2% (1,658)

Moderate or heavy calcification 19.5% (2,378)

Thrombus 11.8% (1,439)

Dissection 10.0% (1,209)

* The number of angiograms in the coronary artery recognition task. † The number of lesion 
samples in the lesion morphology detection task. DIA: diagonal; LAD: left anterior 
descending artery; LCX: left circumflex artery; LM: left main; L-PDA: left posterior 
descending; L-PLA: left posterolateral; OM: obtuse marginal; PDA: posterior descending; 
PLA: posterolateral; RCA: right coronary artery
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REFERENCE STANDARD AND ANNOTATION PROCEDURES
DeepDiscern learns rules from the labelled images in the train-
ing phase. To this end, all angiograms collected over a period of 
11 months for the training and testing data sets were reviewed 
by ten qualified analysts in the angiographic core lab at Fu Wai 
Hospital. Coronary segments were annotated based on pre-estab-
lished diagnostic criteria and lesion morphology characterised.

For the coronary segment recognition data sets, each angiogram 
was labelled at a pixel-by-pixel level for coronary segmentation 
recognition. First, analysts annotated sketch labels of all coronary 
artery segments on the original angiograms, with different colours 
representing different arterial segments. Then a group of trained 
and certified technicians labelled fine ground-truth images pixel 
by pixel according to the sketch labels. Supplementary Figure 1 
illustrates this process.

A total of 20 coronary artery segments were annotated 
(Supplementary Figure 2), including proximal right coronary artery 
(RCA prox), RCA mid, RCA distal, right posterior descending 
(PDA), right posterolateral, left main (LM), proximal left anterior 
descending (LAD prox), LAD mid, LAD distal, 1st diagonal, add. 
1st diagonal, 2nd diagonal, add. 2nd diagonal, proximal circumflex 
(LCX prox), LCX distal, 1st obtuse marginal (OM), 2nd OM, left 
posterolateral, left posterior descending (L-PDA) and intermediate.

Although accurate coronary diagnosis requires coronary injec-
tions in multiple views to ensure that all coronary segments are 
seen clearly without foreshortening or overlap, it is not necessary to 
include all potential views in a given coronary segment. In clinical 
practice, several dominant projections are typically used to visual-
ise a coronary segment and its morphology. Therefore, during the 
training and testing process of each coronary segment, DeepDiscern 
focused mainly on dominant projections provided. The correspond-
ing relationship between the observed coronary segment and the 
angiographic views is shown in Supplementary Table 1.

For the lesion morphology detection data sets, expert analysts 
marked all lesion morphologies identified on the angiogram, includ-
ing stenotic lesion, TO, calcification, thrombosis, and dissection. 
Stenotic lesion was defined as ≥50% diameter stenosis. TO was 
defined as angiographic evidence of TOs with Thrombolysis In 
Myocardial Infarction (TIMI) flow grade 0. Calcification was 
defined as readily apparent radiopacities noted within the apparent 
vascular wall (moderate: densities noted only with cardiac motion 
before contrast injection; severe: radiopacities noted without car-
diac motion before contrast injection). Thrombus was defined as 
a discrete, intraluminal filling defect with defined borders and 
largely separated from the adjacent wall with or without contrast 
staining15. Dissection grade was diagnosed based on the National 

LAO
(n=1,010)

LAO_CAU
(n=627)

CAU
(n=1,796)

LAO_CRA
(n=873)

LAO_CAU
(n=1,511)

LAO_CRA
(n=1,583)

RAO
(n=473)

CRA
(n=1,769)

Stenosis
(n=1,315)

Calcification
(n=1,347)

Thrombus
(n=1,130)

Dissection
(n=918)

Total occlusion
(n=2,529)

RAO_CRA
(n=1,982)

RAO_CAU
(n=1,749)

Training for segment
recognition DNN

(n=12,323)

Testing for segment
recognition DNN

(n=1,050)

Training for lesion morphology
detection DNN (n=6,239)

12,184 lesion samples
2,700 stenosis samples,
2,378 calcification samples,
4,458 total occlusion samples,
1,439 thrombus samples,
1,209 dissection samples

Testing for lesion morphology
detection DNN (n=1,000)

1,200 lesion samples
248 stenosis samples,
228 calcification samples,
402 total occlusion samples,
193 thrombus samples,
129 dissection samples

20,612 angiograms of 10,073 patients were collected at Fu Wai Hospital

Lesion morphology annotation (n=7,239)Coronary segment annotation (n=13,373)

Figure 1. Data flow for the lesion morphology detection task and the coronary segment recognition task. Coronary segment recognition. In 
total, 13,373 angiograms were used, and divided into seven parts to train and test DeepDiscern DNN. Lesion morphology detection. In total, 
7,239 angiograms with 1 to 3 lesion morphology were labelled for model training and testing. There were 12,184 lesion samples of five kinds 
of lesion morphology. CAU: caudal view; CRA: cranial view; LAO: left anterior oblique view; LAO_CAU: left anterior oblique-caudal view; 
LAO_CRA: left anterior oblique-cranial view: RAO: right anterior oblique view; RAO_CAU: right anterior oblique-caudal view; 
RAO_CRA: right anterior oblique-cranial view
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Heart, Lung and Blood Institute (NHLBI) coronary dissection cri-
teria (Supplementary Table 2). The lesion type, location, and extent 
were labelled using a rectangular box. Supplementary Figure 1 
illustrates this process. In total, 7,239 angiograms with one to three 
lesion morphologies were labelled for model training and test-
ing. There were 12,184 positive samples in these angiograms. The 
lesion morphology classification data are shown in Table 1.

DEEP LEARNING MODEL
DeepDiscern was designed to use these two DNN to recognise 
coronary segments and detect lesion morphology (Figure 2). 
Features of the input angiogram carrying different semantic infor-
mation were extracted including low-level features, such as vessel 
edges and background texture, and high-level features, such as the 
overall shape of the arteries.

For the coronary artery recognition task, we modified a spe-
cial DNN - conditional generative adversarial network (cGAN) 
(Supplementary Figure 3) for image segmentation. For the lesion 
morphology detection task, we developed a convolutional DNN 
(Supplementary Figure 4), which outputs the location of all 
the lesion morphologies that appeared in the input angiogram. 
The network structure, implementation details, training process 
and testing process of segment recognition DNN are detailed in 
Supplementary Appendix 1, and the lesion detection DNN in 
Supplementary Appendix 2.

For each input angiogram, DeepDiscern combines the two 
output results from coronary artery recognition DNN and lesion 

morphology detection DNN to generate high-level diagnostic infor-
mation, including identification of every coronary artery lesion and 
the coronary artery segment in which it is located.

MODEL EVALUATION AND STATISTICAL ANALYSIS
For arterial segment recognition, given an input angiogram, the 
DeepDiscern segment recognition DNN produced an output image 
with several identified areas that represent the different coro-
nary segments (Supplementary Table 3). For each coronary seg-
ment, we calculated the predicted pixel number for true positive 
(TP), true negative (TN), false positive (FP) and false negative 
(FN). Based on these results, we evaluated the segment recog-
nition model by several metrics including accuracy ([TP+TN]/
[TP+TN+FP+FN]), sensitivity (TP/[TP+FN]), specificity (TN/
[TN+FP]), positive predictive value (TP/[TP+FP]), and nega-
tive predictive value (TN/[TN+FN]). The recognition model was 
evaluated using 1,050 images including all the coronary segments.

In terms of lesion morphology detection, the DeepDiscern 
lesion detection DNN predicts several rectangular areas containing 
the lesions to describe their location and type. For the algorithmic 
analysis, lesion morphology is detected correctly if the overlap rate 
of a predicted rectangle and the ground-truth rectangle (labelled 
by cardiologists) exceeds a threshold λ_d= 0.5. We measured the 
performance of the lesion detection model using precision rate P, 
recall rate R, and F1 score. The precision rate is defined as the 
percentage of correctly detected lesion cases from all lesion cases 
detected by the models. The recall rate is defined as the percentage 

Recognition result

Recognition labels

Segment areas

Detection result

Lesion type

Lesion location

Detection labels

DeepDiscern
Recognition DNN

DeepDiscern
Detection DNN

Recognition 
model

Detection 
model

Combining the results of 
recognition and detection

10,073 patients
DICOM videos

Angiographic images

Training

Testing

Training

Testing

 

Figure 2. The workflow of DeepDiscern. In total, 20,612 angiographic images were collected from DICOM videos of 10,073 patients. Under 
the supervision of the labelled images, we trained the lesion morphology detection model and coronary artery recognition model of 
DeepDiscern. After training, the detection and recognition models generate the result images. These two results were combined to generate 
a high-level diagnosis.
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of correctly detected lesions from all ground-truth lesions labelled 
by cardiologists. The F1 score [F_1= 2×P×R∕(P+R)], which com-
bines the accuracy rate and recall rate, is a better measure of the 
overall performance of the detection DNN model. The evaluation 
process of the recognition model and of the detection model is 
illustrated in Supplementary Figure 5.

Results
Coronary segment recognition DNN was evaluated using 1,050 
images that included all the coronary segments. For segment predic-
tion, the average accuracy, sensitivity, specificity, positive predictive 
value, and negative predictive value of all coronary artery segments 
was 98.4%, 85.2%, 99.1%, 76.2%, and 99.5%, respectively. Higher 
accuracy and sensitivity rates were observed in the proximal seg-
ments of major epicardial vessels (99.9% and 91.8% for LM, 99.8% 
and 92.6% for LAD proximal, 99.8% and 87.9% for LCX proximal, 
and 99.8% and 87.9% for RCA proximal). Arterial segments that 
were identified incorrectly were mostly in the distal segments and 
side branches of the major epicardial vessels. The performance of 
coronary segment recognition DNN was improved as the amount 
of data increased (Supplementary Figure 6). Because the majority 
of pixels in the image were negative, DNN performance cannot be 
assessed only from specificity and negative predictive value. Table 2 
provides detailed results including more metrics, and Figure 3A illus-
trates result images of the artery recognition task. The results under 
different angiographic views are shown in Supplementary Table 4.

One thousand angiograms were used to test the lesion morpho-
logy detection DNN model. The test data set included 1,200 
(248 stenotic, 228 calcification, 402 TO, 193 thrombus, and 
129 dissection) lesion samples. The F1 score, which represents the 
overall performance of the DNN model, for stenotic lesion, TO, 
calcification, thrombus, and dissection was 0.829, 0.810, 0.802, 
0.823 and 0.854, respectively. For all lesion morphologies, recall 
rates were higher than precision rates. Results are shown in Table 3 
and examples of result images of the lesion morphology task are 
shown in Figure 3B. The receiver operating characteristic (ROC) 
curves for different lesion morphologies are shown in Figure 4. The 
area under the curve (AUC) of the lesion morphology detection 

Table 2. Performance of DeepDiscern segment recognition DNN for different coronary artery segments.

Coronary artery segment
Accuracy %  

(95% CI)
Sensitivity %  

(95% CI)
Specificity %  

(95% CI)
PPV %  

(95% CI)
NPV %  

(95% CI)

All segments 98.4 (98.3-98.4) 85.2 (84.8-85.6) 99.1 (99.1-99.1) 76.2 (75.7-76.6) 99.5 (99.5-99.5)

LM 99.9 (99.9-99.9) 91.8 (91.1-92.5) 99.9 (99.9-99.9) 80.7 (79.4-82.0) 99.9 (99.9-99.9)

LAD proximal 99.8 (99.8-99.8) 92.6 (91.9-93.2) 99.9 (99.8-99.9) 80.9 (79.5-82.4) 99.9 (99.9-99.9)

LAD mid 99.8 (99.7-99.8) 90.8 (90.1-91.4) 99.8 (99.8-99.8) 82.1 (81.0-83.2) 99.9 (99.9-99.9)

LAD apical 99.7 (99.7-99.7) 84.5 (83.0-86.1) 99.8 (99.8-99.8) 67.8 (66.1-69.5) 99.9 (99.9-99.9)

1st DIA 99.4 (99.4-99.5) 78.1 (75.9-80.4) 99.6 (99.6-99.6) 60.0 (58.1-62.0) 99.8 (99.8-99.9)

2nd DIA 99.7 (99.7-99.8) 73.7 (68.0-79.3) 99.8 (99.8-99.8) 41.2 (36.5-45.9) 99.9 (99.9-99.9) 

LCX proximal 99.8 (99.8-99.8) 87.9 (86.4-89.4) 99.9 (99.9-99.9) 78.8 (77.1-80.5) 99.9 (99.9-99.9)

LCX distal 99.7 (99.6-99.7) 81.3 (79.6-83.1) 99.8 (99.8-99.8) 78.3 (76.3-80.2) 99.9 (99.8-99.9)

Intermediate 99.6 (99.5-99.6) 74.1 (69.8-78.4) 99.7 (99.7-99.8) 63.2 (58.1-68.4) 99.9 (99.8-99.9)

OM 99.7 (99.6-99.7) 79.2 (75.9-82.5) 99.8 (99.7-99.8) 53.0 (48.8-57.2) 99.9 (99.9-99.9)

L-PLA 99.5 (99.5-99.5) 80.6 (78.3-82.8) 99.7 (99.6-99.7) 69.1 (66.7-71.4) 99.8 (99.8-99.9)

L-PDA 99.6 (99.5-99.7) 83.1 (79.6-86.6) 99.7 (99.7-99.8) 72.5 (69.1-75.9) 99.9 (99.9-99.9)

RCA proximal 99.8 (99.8-99.8) 87.9 (87.0-88.8) 99.9 (99.9-99.9) 86.7 (85.9-87.5) 99.9 (99.9-99.9)

RCA mid 99.7 (99.7-99.8) 85.6 (84.5-86.7) 99.8 (99.8-99.9) 76.6 (75.3-77.9) 99.9 (99.9-99.9)

RCA distal 99.8 (99.8-99.8) 83.2 (82.0-84.4) 99.9 (99.9-99.9) 88.2 (87.1-89.3) 99.9 (99.9-99.9)

PDA 99.7 (99.7-99.7) 75.4 (73.4-77.4) 99.8 (99.8-99.9) 70.6 (68.7-72.5) 99.9 (99.9-99.9)

PLA 99.5 (99.5-99.5) 77.2 (75.6-78.7) 99.7 (99.7-99.7) 72.0 (70.3-73.7) 99.8 (99.8-99.8)

CI: confidence interval; DIA: diagonal; LAD: left anterior descending artery; LCX: left circumflex artery; LM: left main; L-PDA: left posterior descending; 
L-PLA: left posterolateral; NPV: negative predictive value; OM: obtuse marginal; PDA: posterior descending; PLA: posterolateral; PPV: positive predictive 
value; RCA: right coronary artery 

Table 3. Diagnostic performance of DeepDiscern lesion detection 
DNN.

Lesion type
Precision 

rate
Recall rate F1 score

Stenosis 0.769 0.901 0.829

Total occlusion 0.757 0.871 0.810

Calcification 0.751 0.862 0.802

Thrombus 0.742 0.925 0.823

Dissection 0.790 0.926 0.854

DeepDiscern achieved an average recall of 89.7% for the five lesion 
types, namely, stenosis, total occlusion, calcification, thrombus and 
dissection (λd= 0.5).
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DNN for stenotic lesion, TO, calcification, thrombus, and dis-
section was 0.801, 0.759, 0.799, 0.778, and 0.863, respectively.

The DeepDiscern system provides an automatic and multi-
modal diagnosis in a two-step process. DeepDiscern first recog-
nises all the arterial segments in the angiogram, and then it detects 
the lesions in the angiogram. Processing these two steps took less 

than two seconds on average for every angiogram (1.280 seconds 
for the segment recognition task, and 0.648 seconds for the lesion 
detection task). Combining these two results, DeepDiscern can 
analyse all lesions appearing in an angiogram (Figure 5).

Discussion
Many deep learning techniques that focus on a single aspect of 
the coronary angiogram and coronary computed tomography 
analysis, and therefore do not provide a high-level analysis, have 
been described previously9-14. Although a single neural network 
has been applied to medical imaging and other medical signals 
to generate high-level diagnosis16-18, these approaches are different 
from the DeepDiscern system, which provides a coronary diag-
nostic map by integrating multiple aspects, including the identifi-
cation of different coronary artery segments, and the recognition 
of lesion location and lesion type. Because of the challenges of 
solving the complexities of coronary angiography using a single 
end-to-end DNN, DeepDiscern uses multiple DNN to solve mul-
tiple sub-problems and combines the results of multiple DNN to 
produce a high-level diagnosis.

With the current global population expansion, the number of 
patients with cardiovascular disease is increasing, resulting in 
a growing workload for cardiologists. DeepDiscern is capable of 
analysing a coronary angiogram in just a few seconds by learning 
and understanding medical knowledge from massive medical data. 
DeepDiscern can be used as an assistant to analyse lesion infor-
mation quickly and help cardiologists to flag and diagnose lesion 

Figure 3. Result imaging of the segment recognition model and the lesion morphology detection model. A) Segment recognition. First 
row: input angiograms. Second row: resulting images generated by DeepDiscern segment recognition DNN. Third row: ground-truth labelled 
images. Different identified areas represent the different coronary segments. B) Lesion morphology detection. First row: input angiograms and 
ground-truth bounding boxes. There is a TO morphology in the first and second angiograms, and a thrombus morphology in the third 
angiogram in this row. Second row: bounding boxes and lesion types generated by the DeepDiscern lesion morphology detection model.
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Figure 4. ROC curves and AUC values of all lesions. DeepDiscern 
lesion detection DNN predict several bounding boxes, which may 
contain lesion morphologies. The bounding box with a correct 
location and a correct type is a positive sample. The bounding box 
with a wrong location or a wrong type is a negative sample.
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severity and morphology during the intervention before making 
a treatment decision. In addition, the amount of medical documen-
tation routinely recorded has grown exponentially and now takes 
up to a quarter to a half of doctors’ time19. DeepDiscern can gen-
erate detailed angiographic reports automatically, saving cardio-
logists significant time for patient care. Thus, this approach has 
the potential to reduce workload and improve efficiency in coro-
nary angiography diagnostics.

In clinical practice, visual interpretations of coronary angio-
grams by individuals are highly variable20. Inevitable subjective 
bias can have a great impact on diagnosis and treatment decisions21. 
Unlike the interpretation of cardiologists, the evaluation criteria of 
DeepDiscern are consistent for the same data set. In addition, deep 
learning has the ability to extract features automatically in digital 
angiographic images at a pixel scale, thereby impacting on angio-
graphic interpretation by allowing analysis of angiographic images 
and identification of lesion features that are hard to discern by the 
human eye. Thus, the diagnosis of DeepDiscern is intended to be 
objective, accurate and reproducible.

DeepDiscern could also alleviate the growing problem of 
unequal distribution of medical resources and access to advanced 
health care. In 2017, at least half of the world’s population was 
unable to access essential health services22. In China, the differ-
ence between the highest value of healthcare access and quality 
(HAQ) and the lowest is 43.5 (the highest in Beijing is 91.5 and 
the lowest in Tibet is 48.0)23. The number of cardiovascular dis-
ease patients in China has reached 290 million. There are more 
than 2,000 primary hospitals in China providing coronary inter-
vention treatment, with levels of diagnosis and treatment dif-
fering from place to place. The DeepDiscern technology can be 

extended easily and rapidly to major hospitals in the country and 
even the world. Implementing the DeepDiscern technology in 
primary hospitals countrywide could relieve the high demand for 
trained cardiologists, who are scarce, and provide consistency for 
improving angiographic diagnostic accuracy and treatment deci-
sions, thereby achieving homogenisation of medical standards.

In the future, we will develop coronary artery lesion diagnos-
tic systems that analyse more types of lesion morphology such 
as trifurcation, bifurcation, and severe tortuosity, among others. 
Thereafter, many decision-making tools based on recognition of 
lesion morphology and coronary artery segments can be automated 
without manual discrimination. For example, the SYNTAX score 
is a decision-making tool in interventional cardiology, which is 
determined simply by anatomical features in an angiogram24. The 
automation of SYNTAX score calculation is of great significance 
for the diagnosis of coronary angiography as it is an important tool 
for treatment selection (bypass surgery or percutaneous coronary 
intervention) in patients with more extensive CAD. The expected 
automatic SYNTAX score calculation system can generate a result 
in half a minute, detailing all the information about lesions that 
appear on a patient’s coronary arteries (Supplementary Figure 7).

Limitations
This study has several limitations. In this initial iteration, the input 
of DeepDiscern was a single frame angiogram obtained from an 
angiographic DICOM file, which provides limited information 
compared to a DICOM video. In actual use, after the procedure 
starts, the video stream of the contrast image is transmitted to 
our device. We used an automatic algorithm to extract a single 
frame with optimal contrast opacification and visualisation of the 

Figure 5. Combined results of DeepDiscern. In the first column are original angiograms. In the second column are resulting images of artery 
recognition DNN, where black areas represent background, white areas represent catheter, and other different colours represent different 
coronary artery segments. In the third column are resulting images of detection DNN. The location of lesion morphology on the angiogram is 
marked by several boundary boxes. The type of morphology is also predicted. In the fourth column are the combined results of recognition 
DNN and detection DNN.
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coronary artery tree and then used this single frame image as the 
input for DeepDiscern. The diagnosis of coronary lesions is based 
on the dynamic evaluation of lesion characteristics assessed in 
multiple coronary angiographic views. Additionally, DeepDiscern 
has a large requirement for training data volume. The lack of train-
ing data can seriously affect the recognition accuracy. In general, 
models trained with more data have better performance. Moreover, 
all the angiograms used for training and testing were collected 
from a large single centre; therefore, external validation by using 
data from other centres is warranted.

Conclusions
Deep learning technology can be used in the interpretation of diag-
nostic coronary angiography. In the future it may serve as a more 
powerful tool to standardise screening and risk stratification of 
patients with CAD.

Impact on daily practice
In clinical practice, inevitable subjective bias can have a great 
impact on diagnosis and treatment decisions. Unlike interpreta-
tion by cardiologists, the evaluation criteria of DeepDiscern are 
consistent for the same data set. In addition, DeepDiscern can 
analyse angiographic images and identify lesion features that 
are hard to discern by the human eye, which can also impact on 
angiographic interpretation. Thus, the diagnosis of DeepDiscern 
is intended to be objective, accurate and reproducible.
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Supplementary Appendix 1. Implementation detail about coronary artery 

recognition network 

Model structure 

Existing DNN algorithms usually predict the category of each pixel. The pixel-level accuracy may be 

high, but the relationship between pixels is easily overlooked, making the vessel segmentation results 

discontinuous. Thus, we modified a special DNN: conditional generative adversarial network (cGAN) 

(Supplementary Figure 4) for image segmentation (so-called pix2pix, pix2pixHD). This cGAN 

consists of a generator and a discriminator. The training process of this cGAN can be treated as a 

competitive procedure between the generator and the discriminator. In the end, the entire model 

reaches Nash equilibrium. In the evaluation process, we only apply the generator to generate artery 

recognition results. The generator takes the coronary angiogram input and outputs the coronary artery 

category to which each pixel belongs. We rearrange the prediction results of each pixel into an image, 

indicating the recognition result of DNN. The size of the input angiogram and the output image result 

is 512×512 pixels. 

 

In the generator, we apply the U-net structure with four down-sampling blocks (down-sample the input 

from 512x512 to 32x32) and four up-sampling blocks (up-sample the input from 32x32 to 512x512) as 

the generator part, which is shown in Supplementary Figure 4. The discriminator part contains three 

sub-discriminators to discriminate on three different scales and average the results. The three 

distinguishing scales are the original image, 1/2 down-sampling of the original image, and 1/4 down-

sampling of the original image. These three layers build an image pyramid and train a discriminator for 

each layer. It is notable that we use a convolutional “PatchGAN” classifier in these sub-discriminators, 

which only penalises structure at the scale of image patches. More specifically, each sub-discriminator 

outputs an 8×8 matrix. Each element of this matrix is a single value (from 0 to 1) corresponding to a 

64×64 patch of input. Each sub-discriminator tries to classify if each 64×64 patch in an image is real or 

fake. We run this discriminator convolutionally across the image, averaging all responses to provide 

the ultimate output of sub-discriminator. This design can significantly improve the spatial continuity of 

segmentation results. 

 

In the network testing process, the outputs of the generator are treated as segmentation results. The 

output has three RGB channels (a GAN model output has the same shape as its input). Each pixel in the 

output will be converted to a prediction label according to the Euclidean distance between pixel value 

and prediction label value. The mapping relationship between prediction label value and coronary 

artery segments is shown in Supplementary Table 4. For example, a predicted pixel (250,249,248) 

will be converted to the label value (255,255,255), which has the minimal Euclidean distance to this 

predicted pixel. Different kinds of ground-truth triad value only contain 0,128 or 255, which ensures 

the large Euclidean distance between different ground-truth values so that each pixel will eventually 

converge to its ground-truth label. However, the model will publish various kinds of misclassified 

pixels differently in the initial stage of network training, which slows down the network training. 



 

Multiple-channel output (21 one-hot channels) may improve the issue even though it increases the 

amount calculation slightly. In this work, we set the output as 3 RGB image. 

 

Loss function 

(1) GAN loss. 

The optimisation process of our Conditional GANs can be described as the following minimax game: 

min
𝐺

max
𝐷

𝐿𝐺𝐴𝑁(𝐺, 𝐷), 

Where the loss function 𝐿𝐺𝐴𝑁(𝐺, 𝐷) is given by  

𝐸(𝑖,𝑜)[𝑙𝑜𝑔𝐷(𝑖, 𝑜)] +  𝐸(𝑖)[log (1 − 𝐷(𝑖, 𝐺(𝑖)))], 

where 𝑖 is an angiogram and 𝑜 is a segmentation result image. Our discriminator part has three sub-

discriminators. The learning problem then becomes a multi-task learning problem of 

min
𝐺

max
𝐷1𝐷2𝐷3

∑ 𝐿𝐺𝐴𝑁(𝐺, 𝐷𝑘)𝑘=1,2,3 . 

(2) Feature matching loss. 

In each sub-discriminator, we calculated the pixel-wise loss between the feature of the generated 

segmentation result by generator and the feature of the ground truth. The loss is shown as:  

𝐿𝐹𝑀(𝐺, 𝐷𝑘) =  ∑
1

𝑁𝑖

𝑇
𝑖=1 ‖𝐷𝑘

(𝑖)(𝑖, 𝑜) − 𝐷𝑘
(𝑖)(𝑖, 𝐺(𝑖))‖

1
, 

where T is the total number of layers (herein there are five layers in each sub-discriminator), Ni denotes 

the number of elements in each layer, 𝐷𝑘
(𝑖)

 denotes the ith-layer feature extractor of sub-discriminator 

𝐷𝑘. 

 

(3) VGG-based perceptual loss. 

Like feature matching loss, we also extract the VGG feature of the generated segmentation result by 

generator and the VGG feature of the ground truth, considering the low-level feature (edge and 

context) extracted by pre-trained VGG network, also avails angiogram analysis. The loss is shown as: 

𝐿𝑉𝐺𝐺(𝐺, 𝐷𝑘) =  ∑
1

𝑀𝑗

𝑁
𝑗=1 ‖𝑉𝐺𝐺 

(𝑗)(𝑜) − 𝑉𝐺𝐺 
(𝑗)(𝐺(𝑖))‖

1
 

, 

where N is the total number of VGG layers, Mj denotes the number of elements in each layer, 𝑉𝐺𝐺𝑘
(𝑗)

 

denotes the jth-layer feature extractor of VGG. 

The total loss function is the sum of the above three losses, shown as: 

min
𝐺

max
𝐷1𝐷2𝐷3

∑ 𝐿𝐺𝐴𝑁(𝐺, 𝐷𝑘)

𝑘=1,2,3

+ 𝛼 ∑ 𝐿𝐹𝑀(𝐺, 𝐷𝑘)

𝑘=1,2,3

+ 𝛽 ∑ 𝐿𝑉𝐺𝐺(𝐺, 𝐷𝑘)

𝑘=1,2,3

 

 

Implementation detail 

For training, the initial learning rate is 2×105, which gradually dropped to 106 during training. For 

the weight parameter, we set 𝛼 as 0.5 and 𝛽 as 10. The number of training epochs is 400. 

Graphics processing units are NVIDIA GTX 1080Ti GPUs. Adam optimiser was used to optimise 

our model. Training time lasted about five days. 

  



 

Supplementary Appendix 2. Implementation detail about lesion morphology 

detection network 

Model structure 

For the lesion morphology detection task, we developed a convolutional DNN (Supplementary Figure 

4), which takes coronary angiogram input and outputs the location (the upper left and lower right 

coordinates of the predicted rectangular area) and type (a scalar) of all the lesion morphologies that 

appeared in the input angiogram. Deep residual block, up-sampling layer, and lateral connection are 

used to extract different scale features of different lesions. Using these feature maps, the Region 

Proposal Network generates region proposal areas where lesion morphologies may occur. After that, 

features of every region proposal area are fed into convolutional layers and fully connected layers, to 

predict the type and location of lesion morphologies. 

 

As shown in Supplementary Figure 5, the input angiograms are down-sampled by 22 pooling layers 

and up-sampled by 22 interpolated layers. Different down-sampling features and up-sampling features 

are combined by element-sum (light green arrows) operator. Convolutional layers (green arrows) 

extract four different scale detection features. Using these feature maps. RPN (region proposal 

network) generates region proposal areas where lesion morphologies may occur. After that, features of 

every region proposal area are fed into several convolutional layers and fully connected layers, to 

predict the type and location of lesion morphologies.  

 

We treated four different scale detection features (dark blue blocks as F0, F1, F2, F3) as a feature 

pyramid and viewed it as if it were produced from an image pyramid. Thus, we can adapt the 

assignment strategy of region-based detectors (in Fast r-cnn) in the case when they run on image 

pyramids. Formally, we assign a region of interest (RoI) of width w and height h (on the input image to 

the network) to the level Fk of our feature pyramid by: 𝑘 = ⌊𝑘0 + 𝑙𝑜𝑔2(√𝑤ℎ/224)⌋. Here k0 is the 

target level on which an RoI with 𝑤 × ℎ = 2242 should be mapped into. We set k0 to 3. Intuitively, the 

equation above means that if the RoI’s scale becomes smaller (say, 1/2 of 224), it should be mapped 

into a finer-resolution level (say, k = 2). 

 

Loss function 

After assigning the detection feature for a RoI, the optimisation process of our lesion detection network 

can be described as: 

𝐿(𝑝𝑖, 𝑡𝑖) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖, 𝑝𝑖

∗)

𝑖

+ 𝜆
1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖
∗)

𝑖

 

Where 𝑝𝑖 is the classification possibility of the ith anchor (the region proposal box generated by RPN, 

presented by a four tuple {𝑥1, 𝑦1, 𝑥2, 𝑦2}, where (𝑥1, 𝑦1) is the left-top corner of the box and (𝑥2, 𝑦2) 

is the right-bottom corner of the box), we name the ith anchor as Anchor[i].  

 

When the Anchor[i] is positive region proposal (the IOU of Anchor[i] and its Ground Truth Box >0.7), 

𝑝𝑖
∗ = 1. When the Anchor[i] is negative region proposal (the IOU of Anchor[i] and its Ground Truth 

Box <0.3), 𝑝𝑖
∗ = 0. Anchors that are not positive or negative were not trained by the network. 𝑡𝑖 is the 



 

parameterised coordinates of the predicted box of Anchor[i], and 𝑡𝑖
∗ is the parameterised coordinates 

of the Ground Truth Box of Anchor[i].  

 

For an anchor box, 𝑡𝑖 = {𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ} where 𝑡𝑥 = (𝑥 − 𝑥𝑎/𝑤𝑎), 𝑡𝑦 = (𝑦 − 𝑦𝑎/ℎ𝑎), 𝑡𝑤 =

𝑙𝑜𝑔(𝑤/𝑤𝑎), 𝑡ℎ = 𝑙𝑜𝑔(ℎ/ℎ𝑎); 𝑡𝑖
∗ = {𝑡𝑥

∗, 𝑡𝑦
∗ , 𝑡𝑤

∗ , 𝑡ℎ
∗} where 𝑡𝑥

∗ = (𝑥 
∗ − 𝑥𝑎/𝑤𝑎), 𝑡𝑦 = (𝑦 

∗ −

𝑦𝑎/ℎ𝑎), 𝑡𝑤 = 𝑙𝑜𝑔(𝑤 
∗/𝑤𝑎), 𝑡ℎ = 𝑙𝑜𝑔(ℎ 

∗/ℎ𝑎), where (𝑥, 𝑦) is the centre point of the predicted box, 

𝑤, ℎ are the weight and height of the predicted box, (𝑥𝑎 , 𝑦𝑎) is the centre point of the anchor box, 

𝑤𝑎 , ℎ𝑎 are the weight and height of the anchor box, (𝑥 
∗, 𝑦 

∗) is the centre point of the Ground Truth 

box, 𝑤 
∗, ℎ 

∗ are the weight and height of the Ground Truth box. 

 𝑁𝑐𝑙𝑠 is the minibatch size. 𝑁𝑟𝑒𝑔 is the number of anchor box. 𝐿𝑐𝑙𝑠(𝑝𝑖, 𝑝𝑖
∗) = −log [𝑝𝑖𝑝𝑖

∗ + (1 −

𝑝𝑖)(1 − 𝑝𝑖
∗)] and 𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖

∗) = 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡𝑖 − 𝑡𝑖
∗) where 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) = {

0.5 ∗ 𝑥2     |𝑥| < 1
    |𝑥| − 0.5  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 . 

 

Implementation details 

All architectures in Supplementary Figure 4 are trained end to end. We adopt synchronised SGD 

optimiser to update our network. Graphics processing units are NVIDIA GTX 1080Ti GPUs. A mini-

batch involves two images and 256 anchors per image. We use a weight decay of 0.0001, a momentum 

of 0.9 and a 𝜆 of 10. The learning rate is 0.02 for the first 30k mini-batches and 0.002 for the next 10k. 

The implementation details of FPN feature selection are set the same as in FPN (feature pyramid 

networks). 

 

 

 



 

 

Supplementary Figure 1. The annotation procedure for coronary artery recognition 

and lesion morphology detection. 

A) Coronary artery recognition. The first image is an original image. The second 

image is a sketchy-labelled image. The third image is a fine-labelled image.  

B) Lesion morphology detection. The first image is an original image. The second 

image is a labelled image including lesion type and lesion location. 

 

 

 



 

 

Supplementary Figure 2. Annotated coronary artery segments. 

A total of 20 coronary artery segments were annotated in our study. 

 

  



 

 

 

 

 

Supplementary Figure 3. The structure of the coronary artery recognition network. 

This GAN consists of a generator and a discriminator. The training process of this 

network can be treated as a competitive procedure between the generator and the 

discriminator. In the end, the entire model reaches Nash equilibrium and the accuracy 

of the discriminator is equal to 50%, which means that the discriminator is hard to 

discern the difference between recognition results and ground-truth images, showing 

that generator outputs a high-quality recognition result. In the evaluation process, we 

only apply the generator to generate artery recognition results. 

In the generator, the input angiograms are down-sampled (white arrows) and then up-

sampled (blue arrows) to generate features of different scale. These features are 

combined by concatenated operator (yellow arrows) to enrich the semantic 

information for better performance. In the discriminator, recognition results and 

ground truth are resized to different scale and processed and combined by several 

convolutional layers to generate the discrimination result. 

 

  



 

 

 

 

Supplementary Figure 4. The structure of the lesion morphology detection network. 

The input angiograms are down-sampled by 2x2 pooling layers and up-sampled by 

2x2 interpolated layers. Different down-sampling features and up-sampling features 

are combined by element-sum (light green arrows) operator. Convolutional layers 

(green arrows) extract four different scale detection features. Using these feature 

maps, the RPN network generates region proposal areas where lesion morphologies 

may occur. After that, features of every region proposal area are fed into several 

convolutional layers and fully connected layers, to predict the type and location of 

lesion morphologies. RPN: region proposal network 

 

 

 



 

 

Supplementary Figure 5. Evaluation process of the coronary artery recognition 

model and the lesion morphology detection model. 

For the coronary artery recognition model, we feed an angiogram (A) as input image. The 

recognition model will output the results (C). The middle image is ground truth (B). D and E 

are generated by zooming in the LM segment in B and C. In the result image, the red area is 

the predicted area of the LM segment by the model. We counted the number of red pixels in 

this area (E) and ground-truth area (D) to calculate the pixel number of true positive (TP), true 

negative (TN), false positive (FP) and false negative (FN). The TP pixel is the red pixel in D 

and E. The TN pixel is the non-red pixel in D and E. The FP pixel is the red pixel in E but the 

non-red pixel in D. The FN pixel is the non-red pixel in E but the red pixel in D. Based on 

these results, we evaluate the segment recognition model by several metrics including 

accuracy ([TP+TN]/[TP+TN+FP+FN]), sensitivity (TP/[TP+FN]), specificity (TN/[TN+FP]), 

positive predictive value (TP/[TP+FP]), negative predictive value (TN/[TN+FN]). For the 

lesion morphology detection model, we feed an angiogram (A) as input. The detection model 

will output the results (C). The yellow bounding box and lesion name are ground truth (B). 

The white bounding boxes are detected lesion cases by models. One dissection lesion (a, 

overlap rate=0.90 >0.5) is detected correctly, and another one (b, overlap rate=0 <0.5) is 

detected incorrectly. For this angiogram, the precision rate is 50%, the recall rate is 100% and 

the F1 score is 0.667. We counted all detected lesion cases by models and all correctly 



 

detected lesion cases in the test data set to calculate the precision rate, recall rate and F1 score 

of every kind of lesion.  

 

 

 

 

Supplementary Figure 6. Performance of vessel extraction. 

A) Input angiogram.  

B) – F) Result images of recognition models which were trained using a different 

amount of data (1,000, 3,000, 5,500, 8,000, 11,900 images). 

 



 

 

 

Supplementary Figure 7. Expected automatic calculation system for the SYNTAX 

score. 

 

First column: input angiograms under different angiographic views. Second and third 

columns: the intermediate results generated by DeepDiscern system. Fourth column: 

combined results. All images are zoomed in for better visualisation. 

  



 

Supplementary Table 1. Coronary arteries labelled in different angiographic 

views. 

Coronary artery segments CRAb CAUb 

LAO (right)a 

LAO_CAU (right)a 

LAO_CRA (right)a 

LAO_

CAUb 

LAO_

CRAb 

RAO_CAUb RAO_CRAb 

LM √ √  √ √ √ √ 

LAD proximal √   √ √  √ 

First diagonal √   √ √  √ 

Add. first diagonal √   √ √  √ 

LAD mid √   √ √  √ 

Second diagonal √           √  √ 

Add. second diagonal √    √  √ 

LAD apical √   √ √  √ 

Intermediate  √  √  √  

LCX proximal  √  √  √  

LCX distal  √  √  √  

Second obtuse marginal  √  √  √  

First obtuse marginal  √  √  √  

Left posterolateral  √  √  √  

Posterior descending (LCX)  √  √  √  

RCA proximal   √     

RCA mid.   √     

RCA distal   √     

Posterior descending (RCA)   √     

Posterolateral   √     

Unconcerned arteriesc √ √ √ √ √ √ √ 

Background √ √ √ √ √ √ √ 

Catheter √ √ √ √ √ √ √ 



 

DIA: diagonal; LAD: left anterior descending artery; LCX: left circumflex artery; LM: left main; L-

PDA: left posterior descending; L-PLA: left posterolateral; OM: obtuse marginal; PDA: posterior 

descending; PLA: posterolateral; RCA: right coronary artery 

 aIn the LAO_CAU (right) part of the data set, all angiograms were obtained in the LAO_CAU view. 

Only the right coronary artery appeared in these angiograms, as well as for LAO and LAO_CRA 

(right) parts.  

bIn the other parts of the data set, all angiograms were obtained in the angiographic view corresponding 

to their part name. Only the left coronary artery appeared in these angiograms.  

cFor every part of the data set, all coronary artery segments without check marks were labelled as 

“unconcerned arteries”. These coronary artery segments will not be overly concerned in the 

angiographic view of this part of the data set. 

  



 

Supplementary Table 2. National Heart, Lung and Blood Institute (NHLBI) 

coronary dissection criteria. 

Variable Definition 

Dissection  

A Small radiolucent area within the lumen of the vessel 

B Linear non-persisting extravasation of contrast 

C Extraluminal, persisting extravasation of contrast 

D Spiral – shaped filling defect 

E Persistent luminal defect with delayed anterograde flow 

F Filling defect accompanied by total coronary occlusion 

 

  



 

Supplementary Table 3. The mapping relationship between prediction label 

value and coronary artery segments. 

DIA: diagonal; LAD: left anterior descending artery; LCX: left circumflex artery; LM: left main; L-

PDA: left posterior descending; L-PLA: left posterolateral; OM: obtuse marginal; PDA: posterior 

descending; PLA: posterolateral; RCA: right coronary artery 

  

Coronary artery 

segments 

Label value Colour 

Coronary artery 

segments 

Label value Colour 

LM (255,0,0) ■ Second obtuse marginal (128,128,0) ■ 

LAD proximal (0,255,0) ■ First obtuse marginal (128,0,128) ■ 

First diagonal (0,0,255) ■ Left posterolateral (0,128,128) ■ 

Add. first diagonal (0,128,255) ■ Posterior descending (LCX) (128,255,0) ■ 

LAD mid (255,0,255) ■ RCA proximal (255,128,0) ■ 

Second diagonal (0,255,255) ■ RCA mid (255,0,128) ■ 

Add. second diagonal (128,0,255) ■ RCA distal (0,255,128) ■ 

LAD apical (255,255,0) ■ Posterior descending (RCA) (128,128,255) ■ 

Intermediate (128,0,0) ■ Posterolateral (128,255,128) ■ 

LCX proximal (0,0,128) ■ Background (0,0,0) ■ 

LCX distal (0,128,0) ■ Catheter (255,255,255) ■ 



 

Supplementary Table 4. Recognition performance of all segments under 

different angiographic views. 

CAU: caudal view; CRA: cranial view; LAO: left anterior oblique view; LAO_CAU: left anterior 

oblique-caudal view; LAO_CRA: left anterior oblique-cranial view; NPV: negative predictive value; 

PPV: positive predictive value; RAO: right anterior oblique view; RAO_CAU: right anterior oblique-

caudal view; RAO_CRA: right anterior oblique-cranial view  

 

Angiographic view 

Accuracy % 

(95% CI) 

Sensitivity % 

(95% CI) 

Specificity % 

(95% CI) 

PPV % 

(95% CI) 

NPV % 

(95% CI) 

Left coronary artery      

CRA 98.5 (98.4-98.6) 86.8 (85.8-87.8) 98.9 (98.9-99.0) 74.0 (72.8-75.2) 99.5 (99.5-99.6) 

CAU 98.5 (98.5-98.6) 83.8 (82.8-84.8) 98.9 (98.8-99.0) 70.8 (69.7-72.0) 99.5 (99.5-99.6) 

LAO_CRA 98.4 (98.3-98.5) 86.6 (85.5-87.6) 98.8 (98.7-98.9) 70.8 (69.7-71.9) 99.5 (99.4-99.5) 

LAO_CAU 98.7 (98.6-98.8) 87.8 (86.8-88.9) 99.0 (99.0-99.1) 73.4 (72.1-74.6) 99.6 (99.6-99.7) 

RAO_CRA 98.4 (98.3-98.5) 86.6 (85.6-87.5) 98.8 (98.7-98.9) 71.0 (69.9-72.1) 99.5 (99.5-99.5) 

RAO_CAU 99.0 (98.9-99.1) 87.8 (86.9-88.8) 99.4 (99.3-99.4) 80.3 (79.2-81.3) 99.6 (99.6-99.7) 

Right coronary artery      

LAO 98.1 (98.0-98.2) 78.5 (77.2-79.7) 98.8 (98.7-98.9) 72.8 (71.5-74.2) 99.2 (99.1-99.2) 

LAO_CAU 98.6 (98.5-98.6) 83.2 (82.3-84.1) 99.2 (99.1-99.2) 79.7 (78.8-80.6) 99.3 (99.2-99.4) 

LAO_CRA 98.1 (97.9-98.2) 86.5 (85.8-87.3) 99.4 (99.3-99.4) 85.1 (84.3-85.9) 99.5 (99.4-99.5) 

RAO 97.1 (96.8-97.3) 83.4 (81.7-85.0) 99.2 (99.1-99.3) 79.0 (77.2-80.9) 99.4 (99.3-99.5) 


