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Abstract
Aims: Repetitive, fluctuating stress is an important biomechanical mechanism that underlies the rupture 
of atherosclerotic plaques. We developed a novel coronary angiography-based method for in vivo four-
dimensional analysis of dynamic superficial wall stress (SWS) in coronary plaques and applied it for the 
first time in two clinical cases. Our aim was to investigate the potential relationship between dynamic stress 
concentration at baseline and plaque rupture during acute coronary syndrome (ACS) several months later.

Methods and results: Three-dimensional angiographic reconstructions of the interrogated arteries were 
performed at several phases of the cardiac cycle, followed by finite element analysis to obtain the dynamic 
SWS data. The peak stress at baseline was found at the distal and proximal lesion longitudinal shoulders, 
being 121.8 kPa and 98.0 kPa, respectively. Intriguingly, in both cases, the sites with the highest SWS con-
centration at baseline co-registered with the location of plaque rupture during ACS, respectively six and 
18 months after the baseline angiographic assessment.

Conclusions: A novel angiography-based analysis method for four-dimensional evaluation of dynamic 
SWS was feasible for investigating plaque biomechanical behaviour in vivo. Initial experience suggests that 
this technique could be useful in exploring mechanisms of future plaque rupture.
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Introduction
Coronary plaque rupture is often caused by a tear in a fibrous cap 
that is weakened by inflammation and unable to resist mechani-
cal stress which causes biomechanical fatigue1-3. Angiography does 
not depict plaques or provide information on vulnerability, but the 
dynamic image sequences provide valuable additional informa-
tion on the cyclic movement of lumen contours. This characterises 
plaque deformation performance that might differ between vulner-
able lesions and mechanically stable segments. We therefore devel-
oped a novel approach for four-dimensional (4D) biomechanical 
analysis under realistic displacement loads, combining finite ele-
ment analysis with serial angiographic reconstructions, and assessed 
the relationship between stress concentrations in the superficial ves-
sel wall and later location of plaque rupture.

Methods
This proof-of-concept study used coronary angiography record-
ings of two patients who underwent angiography and who, several 
months later, developed acute coronary syndromes (ACS), assessed 
with repeat angiography and optical coherence tomography (OCT). 
Patients were retrospectively identified from a database of Fujita 
Health University Hospital, Toyoake, Japan. The local ethics commit-
tee approved this study; patients provided written informed consent.

CASE 1
A 50-year-old man with a mild-to-moderate mid-LAD lesion 
(Figure 1, Moving image 1) showed deterioration to a severe stenosis 
after six months (Moving image 2). OCT revealed thrombi, plaque 
ruptures and a partially healed rupture at the distal lesion border.

Figure 1. Angiography and SWS at baseline, and OCT imaging during ACS after six months (Case 1). Baseline angiography at different 
phases of the cardiac cycle (A-C) shows mild-to-moderate mid-LAD lesion (Moving image 1). SWS distributions at corresponding cardiac 
phases (a-c) reveal high values at mid-lesion and distal-lesion shoulder (Moving image 5) with more local SWS concentrations in the stenotic 
segment, particularly in distal lesion shoulder (arrow; flipped view b’). During ACS, transversal OCT images (I-VII) and longitudinal (D) and 
3D OCT reconstruction (F) show thrombus and plaque rupture (I-IV), and partly healed ruptured plaque (V-VI). The spot with high SWS 
concentration at baseline (red arrow, b’) corresponds with rupture site (II). E) Definition of segments of interest.
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4D analysis of superficial wall stress

CASE 2
A 69-year-old man with an intermediate mid-LCx lesion (Figure 2, 
Moving image 3) showed progression to a severe mid-LCx lesion 
18 months later (Moving image 4). OCT showed thrombi.

Three-dimensional (3D) lumen geometries at different cardiac 
phases were reconstructed with QAngio XA 3D RE (Research 
Edition) (Medis Specials bv, Leiden, the Netherlands)4 and 
were used to perform finite element analysis (Supplementary 
Appendix 1). Historical data5 were utilised for material charac-
teristics. Dynamic (4D) superficial wall stress (SWS) was cal-
culated with Abaqus (V6.13, SIMULIA™; Dassault Systèmes® 
Simulia Corp., Johnston, RI, USA). The von Mises stress, that 
takes into account all stresses in three principal axes, was used 
to report SWS.

Results
Angiographic reconstructions were performed at mid-diastole, 
end-diastole, and end-systole. In case 1, the reconstructed lesion 
segment showed the following cyclic changes from end-diastole to 
end-systole: segment length 104.3 mm-101.3 mm; minimal lumen 
area 2.45 mm2 -2.15 mm2; and percent diameter stenosis 52%-55%. 
In case 2, corresponding changes were: 112.1 mm-106.1 mm; 
3.32 mm2-2.94 mm2; and 50%-52%. The peak and time-averaged 
SWS were significantly higher in lesion segments than in non-
culprit vessels (Supplementary Table 1). SWS measurements in 
non-culprit vessels were similar to those in reference segments.
In case 1, SWS concentrations were highest at mid-lesion and dis-
tal lesion shoulder (Figure 1, Moving image 5). Peak SWS (121.8 
kPa) was found during end-systole (distal lesion shoulder). During 

Figure 2. Angiography and SWS at baseline, and OCT imaging during ACS after 18 months (Case 2). Baseline angiography shows a 
mild-to-moderate mid-LCx lesion (A-C). SWS distributions at corresponding phases of the cardiac cycle (a-c) reveal high SWS at mid-lesion 
and proximal lesion shoulder (Moving image 6), with more local SWS concentrations in stenotic segment - mainly in proximal lesion shoulder 
(arrow; zoomed view b’). During ACS, OCT (I-III) and 3D (D) and longitudinal OCT reconstructions (E) reveal lumen irregularity, thrombus, 
and plaque rupture. The spot with the highest SWS concentration at baseline corresponds with rupture site (I-III). F) Definition of segments of 
interest.
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the entire cardiac cycle, the distal lesion shoulder showed the 
highest time-averaged SWS (18.7 kPa), followed by mid-lesion 
(15.7 kPa). In case 2 (Figure 2, Moving image 6), more stress con-
centrations were observed at the proximal lesion shoulder: high-
est peak and time-averaged SWS were 98.0 kPa and 23.5 kPa. In 
both cases, spots with the highest SWS at baseline co-registered 
with sites of subsequent rupture. Furthermore, locations of strain 
concentration in lesion segments were consistent with subsequent 
plaque rupture sites (Supplementary Figure 1). Further results are 
presented in Supplementary Appendix 2.

Discussion
This novel approach for the analysis of spatial and temporal vari-
ations in coronary anatomy by use of the finite element method 
can analyse dynamic SWS in vivo. In two clinical cases, sites with 
high SWS concentrations at baseline co-registered with sites of 
later plaque rupture.

Repetitive and fluctuating stress leads to material fatigue, and 
the balance between plaque structural stress and local strength 
of the superficial vessel wall determines where plaque rupture 
occurs. Some patient-specific computational methods have been 
proposed to compute plaque structural stress6-8. These approaches 
require plaque scanning and comprehensive data on the material 
properties of all plaque components9 and apply only static ana-
lyses of plaque structural stress, resulting in unrealistic representa-
tions of time-varying (cyclic) stress distribution.

Our present approach requires neither plaque segmentation nor 
data on complex plaque material properties or dynamic blood 
pressure changes. The rationale is as follows: the complex bio-
mechanical and physiological interactions involving plaque mate-
rial property, cyclic blood pressure, vessel stretching, bending, and 
twisting determine altogether the lumen change during cardiac 
contraction10. By subtracting changes in lumen dimensions over 
time and applying this in the finite element analysis (using the 
displacement loading method instead of the conventional mechan-
ical force loading method5,11), our approach indirectly incorpo-
rates these complex biomechanical and physiological interactions 
in the analysis. This results in a practical approach to compute 
stress on the superficial arterial wall layer that, if present, includes 
the fibrous cap. We measured higher stress during systole at sites 
with abrupt changes in lumen geometry and (presumably) mate-
rial properties. The results cannot be extended into the plaque 
core; nevertheless, they may be most relevant to assess stress dis-
tribution on fibrous caps12. Future research may address the nat-
ural history of coronary disease and the effects of novel drugs, 
bioresorbable scaffolds or stents on biomechanical vessel wall sta-
bility13,14. See Supplementary Appendix 3 for limitations.

Conclusions
A novel angiography-based analysis method for 4D evaluation of 
dynamic SWS was feasible for investigating the plaque biome-
chanical behaviour in vivo. Initial experience suggests that it could 
be useful for exploring mechanisms of future plaque rupture.

Impact on daily practice
This novel approach for 4D biomechanical analysis of spatial 
and temporal variations in the coronary anatomy allows the 
assessment of dynamic superficial wall stress in vivo. It might 
be useful for investigating mechanisms of plaque rupture.
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Supplementary data 

Supplementary Appendix 1. Methods 

3D lumen geometries of coronary arteries at the different cardiac phases were 

reconstructed from two angiographic projections with minimal vessel overlap and 

foreshortening, acquired several months before ACS, using QAngioXA 3D RE 

(Research Edition) (Medis Specials bv, Leiden, the Netherlands) [4].  

 

All reconstructed lumen geometries were then uniformly discretised into the same 

structured meshes of quadrilateral elements with the same node seeds both at the 

longitudinal and circumferential directions. The total distance of the nodes on each 

circle at the circumferential direction from one configuration to another was 

calculated along the artery to determine one-to-one correspondence under the 

assumption of homogeneous continuum. To avoid the local stress concentration 

caused by poor mesh quality, these original meshes were then optimised by smoothing 

function with the criteria of shape parameters, including mesh Jacobian (0.85), aspect 

ratio (3.0), maximum angle (>110 °) and minimum angle (<70°). According to the 

optimisation principle for minimum total displacement of all nodes moving from one 

configuration to the next, each node was implemented through one-to-one mapping 

between two adjacent configurations. The displacement load of each node was 

obtained by the change in its spatial locations during cardiac contraction. A thickness 

of 60 μm for the superficial wall was applied, since accuracy in delineation of the 

lumen contours on angiographic images is half a pixel of 120 μm in modern X-ray 

angiographic systems when exported into an image size of 1,024×1,024 pixels. The 

interval of cardiac phases (as used for the 3D angiographic reconstruction) was 

determined from the electrocardiogram that was recorded with angiographic runs. 

Finite element models were assumed as a homogeneous, isotropic, nearly 

incompressible, Mooney-Rivlin material that described different strain energy density 

functions by modulating two material parameters, i.e., C1 and C2. These two 

parameters were set as 2.6 kPa and 8.4 for normal segments, and 5.1 kPa and 13.0 for 

stenotic segments based on historical data [5].  

 

Dynamic superficial wall stress (SWS) of cardiac contraction-induced variation in 

vessel wall morphology was calculated in Abaqus software (V6.13, SIMULIA; 

Dassault Systèmes® Simulia Corp., Johnston, RI, USA) using an input file which was 

the integration of finite element modelling and displacement load functions. To 

investigate the effect of dynamic SWS on plaque rupture, stress measurements in 

culprit segments were compared with measurements in non-culprit arteries of the 

same patient. The von Mises stress that takes into account all stresses in three 

principal axes was used to report SWS. 



 

 

Supplementary Table 1. Peak and time-averaged superficial wall stress (SWS) in culprit 

lesion and non-culprit vessel segments. 
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Case 1 

Peak 

SWS 

(kPa) 

34.4 61.3 100.7 121.8 59.0 40.9 

 

Time-

averaged 

SWS 

(kPa) 

7.5 11.4 15.7 18.7 9.5 6.8 

Case 2 

Peak 

SWS 

(kPa) 

51.2 98.0 97.5 49.7 21.1 36.0 

 

Time-

averaged 

SWS 

(kPa) 

11.5 23.5 16.9 15.0 6.4 4.3 

 



 

 

Supplementary Figure 1. 

 

 

Strain distribution of both cases at corresponding phases of peak stress at baseline.  

A) LAD; B) LCx.  

White arrows indicate strain concentration. Enlarged graphs show spots of strain 

concentration consistent with sites of subsequent plaque rupture.  

LE: maximum principal logarithmic strain  

 

 

 

Supplementary Appendix 2. Additional results 

When the thickness of the superficial wall was changed to five times thinner or 

thicker (i.e., 12 μm and 300 μm), the pattern of dynamic SWS distribution remained 

unchanged and the peak SWS showed only slight changes to 114.0 kPa and 124.7 kPa 

in case 1, and 95.23 kPa and 102.0 kPa in case 2, respectively.  



 

 

Supplementary Appendix 3. Limitations  

Our approach is limited by the limited spatial resolution of coronary angiography. 

However, as modern X-ray angiograms with digital panels generally acquire images 

with higher resolution (<0.1 mm/pixel) but export images with lower resolution 

(typically around 0.2 mm/pixel) for post-processing, use of raw images might 

improve the accuracy of SWS computation. Although intravascular ultrasound (IVUS) 

and optical coherence tomography (OCT) have higher image resolutions, it is highly 

challenging to reconstruct true time-varying 4D coronary geometries based on these 

data. Furthermore, the application of the Mooney-Rivlin constitutive model was 

simple but is commonly used to describe hyperelastic material. Different constitutive 

model and corresponding material parameters can alter the result of stress distribution 

to some extent. Nevertheless, this has limited effects on the cyclic deformation and 

strain of the superficial arterial wall layer. Anisotropic constitutive models, such as 

Fung or Holzapfel models [9], may be used for the quantitative analysis of SWS at 

different directions. In addition, mechanical properties of fibrous caps may change 

over time due to temporary inflammation or therapy-induced reduction thereof (e.g., 

after aggressive lipid lowering). This may limit the value of SWS for predicting high-

risk lesions. Finally, the accuracy of our proposed method requires a thorough 

validation before clinical applications can be considered.  




