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Abstract
Background: Delayed diagnosis or misdiagnosis of acute myocardial infarction (AMI) is not unusual in 
daily practice. Since a 12-lead electrocardiogram (ECG) is crucial for the detection of AMI, a systematic 
algorithm to strengthen ECG interpretation may have important implications for improving diagnosis.
Aims: We aimed to develop a deep learning model (DLM) as a diagnostic support tool based on a 12-lead 
electrocardiogram.
Methods: This retrospective cohort study included 1,051/697 ECGs from 737/287 coronary angiogram 
(CAG)-validated STEMI/NSTEMI patients and 140,336 ECGs from 76,775 non-AMI patients at the emer-
gency department. The DLM was trained and validated in 80% and 20% of these ECGs. A human-machine 
competition was conducted. The area under the receiver operating characteristic curve (AUC), sensitivity, 
and specificity were used to evaluate the performance of the DLM.
Results: The AUC of the DLM for STEMI detection was 0.976 in the human-machine competition, which 
was significantly better than that of the best physicians. Furthermore, the DLM independently demonstrated 
sufficient diagnostic capacity for STEMI detection (AUC=0.997; sensitivity, 98.4%; specificity, 96.9%). 
Regarding NSTEMI detection, the AUC of the combined DLM and conventional cardiac troponin I (cTnI) 
increased to 0.978, which was better than that of either the DLM (0.877) or cTnI (0.950).
Conclusions: The DLM may serve as a timely, objective and precise diagnostic decision support tool to 
assist emergency medical system-based networks and frontline physicians in detecting AMI and subse-
quently initiating reperfusion therapy.
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Abbreviations
ALT alanine aminotransferase
AMI acute myocardial infarction
AST aspartate aminotransferase
AUC area under the ROC curve
BMI body mass index
CAD coronary artery disease
CAG coronary angiogram
CK creatine kinase
CKD chronic kidney disease
COPD chronic obstructive pulmonary disease
Cr creatinine
cTnI conventional cardiac troponin I
DLM deep learning model
DM diabetes mellitus
ECG electrocardiogram
ED emergency department
eGFR estimated glomerular filtration rate
GLU glucose
Hb haemoglobin
HDL high-density lipoprotein cholesterol
HF heart failure
hsTnI high-sensitivity cardiac troponin I
HTN hypertension
IRA infarct-related artery
K potassium
LAD left anterior descending artery
LCx left circumflex artery
LDL low-density lipoprotein
LMCA left main coronary artery
Na sodium
NSTE-ACS non-ST-segment elevation acute coronary syndrome
NSTEMI non-ST-segment elevation myocardial infarction
PLT platelet count
PRROC precision-recall receiver operating characteristic curve
PTB Physikalisch-Technische Bundesanstalt
RCA right coronary artery
ROC receiver operating characteristic
STEMI ST-segment elevation myocardial infarction
TC total cholesterol
TG triglycerides
WBC white blood cell count

Introduction
Acute myocardial infarction (AMI) remains a major public health 
issue despite global advances in diagnosis and management1. AMI 
refers to the evidence of acute myocardial injury detected by abnor-
mal cardiac biomarkers with necrosis in a clinical setting consistent 
with myocardial ischaemia. The categories of ST-segment eleva-
tion myocardial infarction (STEMI) and non-ST-segment elevation 
acute coronary syndrome (NSTE-ACS) based on the presentation of 
a 12-lead electrocardiogram (ECG) have customarily been included 
in the concept of acute coronary syndrome (ACS)2. Patients with 

symptoms suggestive of myocardial ischaemia and ST-segment 
elevation on the ECG require timely reperfusion therapy to reduce 
cardiac morbidity and mortality3. Likewise, patients with non-ST-
segment elevation myocardial infarction (NSTEMI) considered to 
be in the very high or high risk categories require an immediate/
early invasive strategy to prevent a worse prognosis4.

However, prompt management depends on rapid recognition and 
precise diagnosis. Despite the established criteria for the diagnosis 
of AMI, it remains a critical challenge for emergency physicians to 
recognise rapidly. Previous studies reported that the rate of misdi-
agnosis of AMI at first medical contact ranged from 2 to 30%5-7. 
Failure to identify high-risk ECG findings in patients with AMI 
results in lower quality care and higher adverse outcomes. One of 
the leading causes of missed identification in the diagnostic process 
was incorrect interpretation of a diagnostic test8,9. Systematic pro-
cesses to improve ECG interpretation may therefore have important 
implications for improving diagnosis. Since the principal diagnostic 
tool for AMI is a 12-lead ECG, a more detailed analysis of the ECG 
may significantly speed up this process.

The current artificial intelligence revolution that started with 
a deep learning model (DLM) has provided us with an unpre-
cedented opportunity to improve the healthcare system, and 
it has been proven to be effective in medical applications10-12. 
Additionally, DLMs were confirmed to be superior to cardiolo-
gists in ECG interpretation when they were trained by large anno-
tated ECG data sets13,14. To our knowledge, the available and 
applicable ECG databases of AMI were relatively small. Our 
study aimed to develop a DLM to detect AMI in a timely, objec-
tive and precise manner by a 12-lead ECG. More than 100,000 
AMI-associated ECGs were recruited and learned by the DLM. 
Facilitated by the system’s powerful computing ability, the perfor-
mance of the trained model was compared with that of physicians, 
including cardiologists and an emergency physician. The diagnos-
tic power for STEMI and NSTEMI by the DLM and conventional 
cardiac troponin I (cTnI) was also evaluated.

Methods
STUDY DESIGN
This was a single-centre, case-control study. The data were pro-
vided by the Tri-Service General Hospital, Taipei, Taiwan, and the 
retrospective design was ethically approved by the institutional 
review board (IRB No. 2-107-05-168). An electronic health sys-
tem was built for collecting ECGs and medical records. The study 
period was from January 2012 to December 2018.

STUDY POPULATION
AMI patients presenting to the emergency department (ED) who 
received a coronary angiogram (CAG) to rule in type I AMI 
and to confirm the infarct-related artery (IRA) of STEMI were 
recruited2. AMI patients with no elec tronic ECG available, right 
side ECG, posterior ECG and pacemaker rhythm were excluded. 
Non-AMI patients presenting to the ED during the same period 
were recruited, while excluding those with a history of AMI or 
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any elevated cTnI during their ED stay. The definitions of AMI, 
STEMI, NSTEMI, non-AMI, and non-STEMI in this study are pro-
vided in Supplementary Table 1 and Supplementary Appendix 1. 
The AMI cases were divided into development (80%) and valida-
tion (20%) cohorts by date. The ECGs in the development cohort 
were excluded from the validation cohort. There was no overlap of 
patients between these two cohorts.

ADJUDICATED FINAL DIAGNOSIS
Adjudication of the final diagnosis was performed by three board-
certified interventional cardiologists who did not participate in the 
human-machine competition and who retrospectively and indepen-
dently reviewed the AMI cases according to the clinical presenta-
tions, serial ECGs, serial cTnI levels and angiographic findings 
to make the final diagnosis of STEMI and NSTEMI, as recom-
mended in the current guidelines2-4. In situations of disagreement 
about the diagnosis, cases were reviewed and adjudicated in con-
sensus meetings.

DATA COLLECTION AND IMPLEMENTATION OF THE DLM
Data collection and DLM implementation are shown in 
Supplementary Appendix 1 and Supplementary Figure 1. ECG 
recordings were collected using a Philips 12-lead ECG machine 
(PH080A), and the DLM was based on ECG12Net, which had 
previously been developed14. The output of the DLM was the 
probability of STEMI, NSTEMI, and non-AMI.

HUMAN-MACHINE COMPETITION
We evaluated the performance of participanting physicians using 
a competition set of 450 ECGs, which included 174 STEMI, 138 
NSTEMI, and 138 non-AMI ECGs. The STEMI ECGs, based on 
the IRA, were further classified into the left main coronary artery 
(LMCA), left anterior descending artery (LAD), left circumflex 
artery (LCx), or right coronary artery (RCA). Five cardiologists 
and one emergency attending physician participated in the compe-
tition. In addition, the Philips 12-lead algorithm was also included 
to detect AMI in the competition15. The physicians had no access 
to any patient information and no knowledge of the data. Their 
responses were entered into an online standardised data entry pro-
gram. We calculated the sensitivities, specificities, and kappa val-
ues to compare their results with those of the DLM.

STATISTICAL ANALYSIS
The study cohort was divided into training, validation, and com-
petition sets. We presented their characteristics as the means and 
standard deviations, numbers of patients, or percentages where 
appropriate. They were compared using either the Student’s t-test 
or the chi-square test, as appropriate. The statistical analysis was 
performed using R software version 3.4.4 (R Foundation for 
Statistical Computing, Vienna, Austria).

All analyses were based on ECGs but not patients. A signifi-
cance level of p<0.05 was used throughout the analysis. The pri-
mary analysis was to evaluate the performance of the DLM, the 

physicians and the Philips algorithm for STEMI detection in the 
human-machine competition. The receiver operating characteris-
tic (ROC) curve and the area under the ROC curve (AUC) were 
applied to evaluate the competition results. We also used preci-
sion-recall ROC (PRROC) to evaluate the model performance 
in hypothetical real-world situations. Because the proportions of 
STEMI, NSTEMI, and non-AMI were distorted in the competi-
tion set, we re-weighted the samples based on the incidences in 
the real world (0.1%, 0.2%, and 99.7% of STEMI, NSTEMI, and 
non-AMI cases, respectively)16-18. The secondary analysis was per-
formed on the whole validation cohort. We included more clinical 
information, such as patient characteristics and laboratory tests, to 
improve the model performance. A multivariable logistic regres-
sion model was used to integrate the DLM and clinical informa-
tion. A series of logistic regression models identified the effects of 
different clinical information on the performance of STEMI and 
NSTEMI detection. The AUC was applied to evaluate the changes 
in model performance. The research interests, model comparison 
and statistical methods in this study are summarised in detail in 
Supplementary Table 2.

Results
BASELINE CHARACTERISTICS OF THE COHORTS
There were 1,051 ECGs before CAG from 737 STEMI patients, 
697 ECGs before CAG from 287 NSTEMI patients and 
140,336 ECGs from 76,775 non-AMI patients in this study. The 
development and validation cohorts included records from 58,056 
and 19,743 patients, respectively. The characteristics and labo-
ratory data are shown in Supplementary Table 3, and a detailed 
description is shown in Supplementary Appendix 2.

PREDICTION OF STEMI, NSTEMI AND NON-AMI
The results of the human-machine competition are summarised in 
Figure 1. The AUC of the DLM in the human-machine competi-
tion was 0.976 for STEMI detection, with a corresponding sensi-
tivity and specificity of 89.7% and 94.6%, respectively. In contrast, 
the sensitivities and specificities for STEMI detection among the 
physicians and the Philips algorithm ranged from 60.5-92.6% and 
76.0-97.5%, respectively, which were lower than those of the 
DLM. The PRROC analysis demonstrated the feasibility of an 
automatic ECG screening system, which revealed that the AUC 
of the DLM for STEMI detection was 0.586 in the hypothetical 
real world. The DLM achieved 63.2% precision and 50.3% recall 
using the appropriate cut-off point. These values were significantly 
better than those of all the physicians and the Philips algorithm.

Performance rankings and consistency analysis of STEMI detec-
tion among the DLM, the physicians and the Philips algorithm in the 
human-machine competition were carried out (Figure 2). The DLM 
achieved the best global performance (kappa=0.645) (Figure 2A), 
whereas the physicians had relatively better STEMI detection but 
poor discrimination of NSTEMI and non-AMI. The consistency 
analysis of AMI detection among the DLM, the physicians and the 
Philips algorithm is shown in the heatmap (Figure 2B).
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ANALYSIS OF IRA OF STEMI
The DLM achieved the best global performance (kappa=0.629) 
for the IRA detection of STEMI (Supplementary Figure 2). As 
shown in Supplementary Figure 3, after exclusion of LMCA 

and LCx, the AUC of the DLM for anterior STEMI detec-
tion was 0.975, with a corresponding sensitivity of 92.6%, 
which outperformed all participating physicians. Moreover, the 
AUC of the DLM in inferior STEMI detection was 0.974, with 
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Figure 1. Performance comparison for STEMI detection in the human-machine competition. The area under the receiver operating 
characteristic curve (AUC) was generated by the prediction of the DLM. The triangles, the square and the diamond denote the cardiologists, 
the emergency physician and the Philips algorithm, respectively. A) The ROC curve in the competition set (STEMI=174, NSTEMI=138, and 
non-AMI=138). B) The precision-recall ROC curve in the revised proportion of the hypothetical real world (STEMI=0.1%, NSTEMI=0.2%, 
and non-AMI=99.7%).
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Figure 2. Performance rankings and consistency analysis of STEMI detection among the DLM, the physicians and the Philips algorithm in the 
human-machine competition. A) Global performance rankings based on the class-3 kappa values. V(X) denotes (V) visiting staff with (X) years 
of experience. B) Consistency analysis as a heatmap coloured based on the values; the values in each cell were the kappa values of each pair.
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a corresponding sensitivity of 84.8%, which was better than all 
but one best physician. In the combined detection of anterior and 
inferior STEMI, the DLM had better performance than all physi-
cians (AUC, 0.975; sensitivity, 89.4%).

INTERPRETATIONS OF STEMI ECGs BY THE DLM AND 
PHYSICIANS
Selected examples of STEMI ECGs in the human-machine com-
petition are shown in Figure 3. A typical STEMI ECG with an 
IRA of the LAD (Figure 3A) was consistently detected by both 
the DLM and the physicians. One STEMI ECG with an IRA of 
the RCA (Figure 3B) was misdiagnosed by the DLM but correctly 
recognised by the best cardiologists. One STEMI ECG with an 
IRA of the RCA (Figure 3C) was misdiagnosed by both the DLM 
and the best cardiologists. The DLM correctly detected the ECG 
(Figure 3D) as STEMI with an IRA of the LAD, which was misdi-
agnosed by the best cardiologists.

Among the 138 NSTEMI ECGs, 58 ECGs were detected as 
non-AMI by the DLM, with an accuracy of 58.0%, which was 
worse than that of the best cardiologist (75.4%). This discrepancy 
was due to a more conservative AMI diagnostic strategy by the 

DLM. In contrast, among 138 non-AMI ECGs, the specificity of 
96.4% of the DLM was much better than those of the two best 
cardiologists (82.6% and 64.5%). After adjustment for the specifi-
cities, the misdiagnosis of NSTEMI by the DLM was obviously 
less than that by the best cardiologists (Table 1). Nevertheless, 
the DLM offered the best performance in AMI detection under the 
standardisation of the best cardiologists. The ECG lead-specific 
analyses for the detection of STEMI and the corresponding IRA 
are shown in Supplementary Figure 4, and a detailed description 
is shown in Supplementary Appendix 2.

LOGISTIC REGRESSION ANALYSIS OF STEMI AND NSTEMI
Univariate and multivariate logistic regression analyses in the 
development cohort revealed that male sex, prior CAD, cTnI, hae-
moglobin, total cholesterol and low-density lipoprotein (LDL) 
levels were independent risk factors for STEMI and NSTEMI 
detection (Supplementary Figure 5).

DIAGNOSTIC VALUE ANALYSIS
We evaluated the performance of the DLM after adjusting for sig-
nificant patient characteristics, disease histories, and laboratory data 

Figure 3. Interpretations of selected STEMI ECGs by the DLM and physicians in the human-machine competition. A) Both the DLM and the 
best cardiologists consistently detected STEMI. B) The DLM misdetected STEMI, which was correctly detected by the best cardiologists. 
C) Both the DLM and the best cardiologists misdetected STEMI. D) The DLM correctly detected STEMI, which was misdetected by the best 
cardiologists.
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to ensure consistency across a wide range of putative confounding 
variables in the validation cohort. The DLM had significantly bet-
ter performance than cTnI in detecting STEMI, with an AUC of 
0.997 with a corresponding sensitivity and specificity of 98.4% and 
96.9%, respectively (Figure 4A). However, cTnI had significantly 
better performance than the DLM in detecting NSTEMI. The AUC 
for NSTEMI detection by the combination of the DLM and the 
first recorded cTnI increased to 0.978, with a corresponding sen-
sitivity and specificity of 91.6% and 96.7%, respectively, which 
was better than that of the DLM (0.877) or cTnI (0.950) individu-
ally (Figure 4B). Using the DLM independently was sufficient to 
detect STEMI, and the addition of patient characteristics did not 
significantly improve its performance. However, cTnI was found to 
improve the diagnostic accuracy for NSTEMI better than any addi-
tional characteristics (Supplementary Figure 6).

Discussion
In this study, we established a DLM to detect STEMI precisely 
through ECG analysis, which applied a deep convolutional network 
to extract notable ECG features with a development cohort of more 

than 100,000 ECGs. All AMI patients were validated by CAG, and 
the corresponding IRA of STEMI was identified. Most importantly, 
our DLM performed better than the physicians in STEMI detection, 
with a high sensitivity of 89.7% and specificity of 94.6%.

The application of deep learning technology in the cardiovascu-
lar field for arrhythmias, dyskalaemia, and valvular heart disease 
has recently grown in popularity13,14,19-21. However, no large-scale 
study has been designed for AMI detection. Previous DLMs for 
AMI detection by a 12-lead ECG mainly used the Physikalisch-
Technische Bundesanstalt (PTB) diagnostic ECG database22,23. 
These studies may be limited because they were not further vali-
dated. Moreover, comparisons between the DLM and physicians 
were lacking. In comparison with previous studies, we enrolled 
the largest number of clinically validated ECGs for development 
and validation. Additionally, we further confirmed the role of cTnI 
in assisting with NSTEMI detection by our DLM. All these results 
highlight the strengths of the current study.

The sensitivity and specificity for STEMI detection by the 
DLM were better than those of the physicians. ECG is the timeli-
est tool among all objective detection methods for AMI. However, 

Table 1. Maximum sensitivity of the DLM for a specific specificity.

Revised itema Sensitivityb (STEMI) Sensitivityc (NSTEMI) Specificityd

DLM (original) 0.000 164/174 (94.3%) 80/138 (58.0%) 133/138 (96.4%)

CV-V3 146/174 (83.9%) 80/138 (58.0%) 114/138 (82.6%)

DLM (specificity=82.6%) 0.450 166/174 (95.4%) 108/138 (78.3%) 114/138 (82.6%)

CV-V11 162/174 (93.1%) 104/138 (75.4%) 89/138 (64.5%)

DLM (specificity=64.5%) 0.612 166/174 (95.4%) 123/138 (89.1%) 89/138 (64.5%)
aThe revised item was used to modify the probability of non-AMI given by DLM. For example, if an original probability of STEMI/NSTEMI/non-AMI was 
0.220/0.310/0.470, then the prediction was defined as non-AMI according to the largest probability. However, the revised item was used to make DLM 
become more sensitive, which was used to modify the probability of non-AMI as 0.470-0.450=0.020 as the first situation. Therefore, the new 
prediction of this case was defined as NSTEMI according to the largest revised probability (0.220/0.310/0.020). bThe sensitivity of STEMI was defined 
as the percentage of STEMI that was correctly identified as STEMI. cThe sensitivity of NSTEMI was defined as the percentage of NSTEMI that was 
correctly identified as NSTEMI. dThe specificity is defined as the percentage of non-AMI cases that was correctly identified as non-AMI.
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Figure 4. Comparison of the diagnostic value between the DLM and cTnI in the validation cohort. The area under the receiver operating 
characteristic curve (AUC) was generated from the logistic regression analysis using the validation cohort. The p-values represent the 
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p=ns. B) Regarding NSTEMI detection: cTnI vs DLM, p<0.01; cTnI+DLM vs cTnI, p<0.05.
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the low sensitivity and the disagreement in interpreting ECGs 
between physicians remain issues. The sensitivity of subjective 
interpretation for AMI detection using a 12-lead ECG ranged only 
from 61 to 74%, with a specificity ranging from 72 to 89%24-26. In 
contrast, previous prehospital computer algorithm interpretations 
for STEMI had a sensitivity of approximately 69%27,28. Our DLM 
provided extraordinary performance that could support decision-
making systems in clinical practice.

The DLM could objectively identify STEMI based on ana-
lysing and learning a large number of ECGs. Moreover, subtle 
ECG changes in the earliest phase of STEMI, which are easily 
missed by physicians, could be correctly recognised by the DLM. 
Nevertheless, prior MI or cardiomyopathy might mislead the DLM 
owing to baseline ST-T changes. Therefore, information regarding 
previously available ECGs or the history of cardiovascular disease 
may be needed to strengthen the capacity of the DLM for STEMI 
detection further.

The performance of our DLM on the detection of STEMI equi-
valents and STEMI mimics was further evaluated. STEMI equiv-
alents, including de Winter sign, Wellens’ syndrome, hyperacute 
T-waves, ST elevation in the lead aVR with diffuse ST depression, 
ST elevation in the presence of bundle branch block, and posterior 
wall AMI, representing coronary occlusion without meeting the tra-
ditional ST elevation criteria, were crucial for timely recognition29,30. 
Additionally, high take-off T presentations, such as hyperkalaemia, 

benign early repolarisation, left ventricular hypertrophy and Brugada 
syndrome, which mimick STEMI, were usually misdiagnosed, lead-
ing to false initiation of primary PCI31,32. Our study demonstrated 
that the DLM exhibited excellent diagnostic power in the detection 
of STEMI equivalents (except for type 1 Wellens’ syndrome) and 
provided extraordinary differentiating capacity in the detection of 
high take-off T (Supplementary Figure 7, Supplementary Figure 8). 
Further prospective and large ECG validation data sets are needed 
to confirm the discriminating abilities of the DLM.

Our DLM has several potential clinical applications. First, the 
DLM could provide decision support and a high-risk alarm system 
for AMI that could help to reduce medical errors in the ED resulting 
from intense time pressures or heavy workloads and harried staff 
during busy working hours. Second, the DLM could be incorpo-
rated into ECG machines in ambulances to facilitate telemedicine 
and shorten the decision time before initiation of reperfusion ther-
apies. Third, our DLM could be applied in rural and remote areas 
and places lacking experts to facilitate ECG interpretation and 
promote diagnostic accuracy, thereby initiating timely manage-
ment and improving the prognosis of STEMI patients. Finally, the 
DLM could be incorporated into a wearable device for AMI detec-
tion, especially for patients with an extremely high risk of athero-
sclerotic cardiovascular disease. Accordingly, our DLM exhibits 
diagnostic benefits and may improve the quality of health care in 
the near future (Central illustration).

Model development Future application

Model validation

AMI?

Compete

Deep learning model Cardiologist-level physicians

12-lead
ECGs

Emergency
department

Telemedicine
(ambulance)

Wearable
device

Telemedicine
(remote areas)

>30,000 ECGs
Rapid & precise

detection

Within seconds

Central illustration. Schematic diagram of the development, validation and future application of the current deep learning model for detecting 
AMI. The DLM learned from more than 100,000 ECGs was developed and trained. Compared with cardiologist-level physicians. The DLM 
exhibited the best performance in the detection of STEMI. The validated model achieved excellent diagnostic power with a sensitivity of 98.4% 
and a specificity of 96.9% for STEMI detection. With the ability of real-time detection, precise diagnosis and early alarm, the application of 
DLM for STEMI detection, including in-hospital, pre-hospital settings, telemedicine and wearable devices, would improve the quality of health 
care of cardiovascular disease in the near future.
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Limitations
Some limitations of this study should be noted. First, the human-
machine competition was based on a well-designed retrospec-
tive study. A real-world prospective study should be conducted to 
verify the clinical impact of the DLM. Second, only six attend-
ing physicians participated in the competition with the DLM. 
Although their performance in AMI detection was relatively con-
sistent with that in previous studies, comparisons should be made 
with more physicians to confirm the superiority of the DLM33. 
Third, the studied patients were enrolled from only one academic 
medical centre, although the diagnosis and management of AMI 
was based on the guidelines. Multicentre validation is needed 
to confirm the value and application of this study. Fourth, there 
were fewer NSTEMI cases than STEMI cases, which may limit 
the capacity for NSTEMI detection by our DLM. Fifth, during the 
study period, cTnI rather than hsTnI was used for AMI diagnosis. 
Sixth, information on prior ECGs to improve diagnostic perfor-
mance was not available in our DLM system. Seventh, the impacts 
of coronary collateral flow on ST-T changes during AMI and the 
performance of the DLM in the detection of STEMI were not ana-
lysed. Finally, only patients in the ED were enrolled, which may 
have led to selection bias and constrained the generalisability of 
the results.

Conclusions
We established an optimal DLM to detect STEMI based 
on a 12-lead ECG with better accuracy than physicians. 
Integration of a DLM may assist frontline physicians in recog-
nising AMI in a timely and precise manner to prevent delayed 
diagnosis or misdiagnosis of AMI and thereby provide prompt 
reperfusion therapy. Further prospective validation with pre-
hospital and in-hospital ECG tests is needed to confirm the 
performance of our DLM.

Impact on daily practice
STEMI can now be recognised using this cardiologist-level algo-
rithm, achieving real-time STEMI diagnosis and early alarms. 
A comprehensive ecosystem has been established including in-
hospital, pre-hospital and wearable devices, improving the qual-
ity of care in AMI. 
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Supplementary Appendix 1. Methods 

The definitions of AMI, STEMI, NSTEMI, non-AMI and non-STEMI [2-4] 

The definitions of AMI, STEMI, NSTEMI, non-AMI, and non-STEMI in this study are summarised in detail in 

Supplementary Table 1. 

 

Data collection 

ECG recordings were collected using a Philips 12-lead ECG machine (PH080A). The ECG signal was recorded 

in a digital format. The sampling frequency was 500 Hz, with 10 seconds recorded in each lead. Patient 

characteristics and laboratory tests were collected from our electronic medical records. The laboratory data 

collected closest to the time of the ECG were assigned to each ECG record. Because the ECG records were 

sometimes conducted within a relatively short time period, some ECGs from the same patients shared the same 

patient characteristics and laboratory data. 

 

Timelines of door-to-balloon/CAG, door-to-ECG, and ECG-to-balloon/CAG 

In STEMI patients without cardiac arrest, endotracheal intubation, or mechanical support, the mean door-to-

balloon time was 65.7 min, the mean door-to-ECG time was 3.9 min, and the mean ECG-to-balloon time was 

60.8 min. In STEMI patients with cardiac arrest, endotracheal tube intubation, or mechanical support, the mean 

door-to-balloon time was 205.6 min, the mean door-to-ECG time was 25.9 min, and the mean ECG-to-balloon 

time was 178.7 min. In NSTEMI patients, the mean door-to-CAG time was 629.6 min, the mean door-to-ECG 

time was 6.7 min, and the mean ECG-to-CAG time was 622 min. 

 

Implementation of the deep learning model (DLM) 

We developed a DLM with 82 convolutional layers and an attention mechanism. The technology details, such 

as the model architecture, data augmentation, and model visualisation, have been described previously [14]. We 

used the same architecture to train two new DLMs for AMI detection and infarct-related artery (IRA) analysis 



of STEMI. The first DLM was trained via full samples with three categories, including STEMI, NSTEMI, and 

non-AMI, and the output of this model was a class-3 softmax output. The second DLM was trained via STEMI 

ECGs, and the output of this model was a class-4 softmax output for IRA analysis. 

 

The standard input format of the DLM was a length of 1,024 numeric sequences, but the original length of our 

12-lead ECG signals was 5,000. In the training process, we randomly cropped a length of 1,024 sequences as 

input. For the inference stage, nine overlapping lengths of 1,024 sequences based on interval sampling were 

used to generate a prediction and were averaged as the final prediction. Due to the scarcity of AMI cases in our 

study, an oversampling process was implemented to ensure that rare samples were adequately recognised. The 

settings for the training model were as follows: (1) Adam optimiser with standard parameters (β1 = 0.9 and β2 = 

0.999) and a batch size of 36 for optimisation; (2) a learning rate of 0.001; and (3) a weight decay of 10−4. The 

100th epoch model was used as the final model, and the presented performance in the validation set was only 

evaluated once. 

 

Implementation details of the DLM 

The DLM architecture 

The architecture of our DLM was based on ECG12Net, which was previously used for serum K+ concentration 

estimation [14]. Supposing that a standard 12-lead ECG signal comprised 12 sequences of N numbers (N = 

1,250 in our database), the ECG signal sequence X = [x1,1, x1,2, …, x1,N; x2,1, x2,2, …, x2,N; …; x12,1, 

x12,2, …, x12,N] was used as the input, and the output was a one-hot encoder of AMI categories (STEMI, 

NSTEMI, and non-AMI) and the IRA of STEMI (STEMI-LMCA, STEMI-LAD, STEMI-LCx, and STEMI-

RCA). 

 

For example, a label of STEMI is encoded as [1,0,0], and a label of NSTEMI is encoded as [0,1,0]. Each output 

label corresponded to a segment of the input. Because the ECG information was mostly provided by 

morphologic changes with shift invariance, convolutional layers with weight sharing were used to adapt to this 



situation and reduce the hazard of overfitting. We therefore developed a 12-channel sequence-to-sequence 

model to conduct this task as a revision of DenseNet. The complete architecture of the DLM is shown in 

Supplementary Figure 1. We defined a “dense unit” as a neural combination as follows: (1) a batch 

normalisation layer to normalise input data, (2) a rectified linear unit (ReLU) layer for non-linearisation, (3) a 

1×1 convolution layer with 4K filters to reduce the dimensions of the data, (4) a batch normalisation layer for 

normalisation, (5) a ReLU layer for non-linearisation, (6) a 3×1 convolution layer with 4K filters to extract 

features, (7) a batch normalisation layer for normalisation, (8) a ReLU layer for non-linearisation, and (9) a 1×1 

convolution layer with K filters to extract features. K was a model constant that was set at 32 in all our 

experiments. After using a dense unit to extract features, we used the dense connectivity resulting from direct 

connections from any layer to all subsequent layers to build a “dense block”. We designed a model with five 

dense blocks comprising 3,3,6,6, and three dense units. 

 

Dense blocks cannot be concatenated when the size of the feature maps changes. Thus, a pooling block was 

used to concatenate each dense block for downsampling in our architecture. This block included a dense unit 

with a 2×1 stride and an average pooling layer with a 2×1 kernel size and stride, which was used for 

downsampling. Each dense block was concatenated by the pooling block to integrate the features of the 

previous blocks. 

 

A length of 864 numeral sequences was used as the input in our experiment. We designed an ECG lead block 

with 80 trainable layers, the architecture of which is shown in Supplementary Figure 1A. The input data were 

passed through a batch normalisation layer, followed by a convolution layer, another batch normalisation layer, 

a ReLU layer, and a pooling layer. The initial convolution layer comprised K convolution filters with a kernel 

size of 7×1 and a stride of 2×1. Next, the data were passed through a series of dense blocks and a pooling block, 

resulting in a 16×1×864 array. A ReLU layer, a batch normalisation layer, and a global pooling layer were 

followed by the last dense block. Finally, a fully connected layer with k output was created for follow-up use, 

where k is the number of categories, which was equal to 3 in the first AMI detection model and 4 in the second 



IRA analysis model of STEMI. This ECG lead block was used to extract 864 features from each ECG lead, 

making a basic output prediction based on each lead. Supplementary Figure 1B shows how ECG12Net 

integrated all the information from the ECG to make an overall prediction. ECG12Net comprised 12 ECG lead 

blocks corresponding to lead sequences. We designed an attention mechanism based on a hierarchical attention 

network to concatenate these blocks, increasing the interpretive power of ECG12Net. The attention block 

comprised a batch normalisation layer followed by a fully connected layer and then two combinations of a batch 

normalisation layer, a ReLU layer, and a fully connected layer. The first and second fully connected layers each 

contained 8/k neurons. Attention scores were calculated for each ECG lead and then integrated for 

standardisation by a linear output layer. The standardised attention scores were used to weight the 12 ECG lead 

outputs by simple multiplication. The 12 weighted outputs were summed and converted into a softmax output 

layer to provide the final prediction value. The above model using ECG information was named ECG12Net, 

which contained 82 trainable layers. The m-log-loss function was used to calculate model loss. A dropout layer 

was added only in the fully connected layer, and the dropout rate was set to 0.5. 

 

Training details 

The 12-lead ECG signal sequences were first trained by the 12 ECG leads separately. Due to the seriously 

uneven distribution in STEMI, NSTEMI, and non-AMI, an oversampling process was implemented to improve 

performance by ensuring that rare samples were adequately recognised. We sampled 12 STEMI ECGs, 12 

NSTEMI ECGs, and 12 non-AMI ECGs in each batch. This process sufficiently considered rare STEMI and 

NSTEMI cases so as not to be skewed by the overwhelming number of normal cases. We used the software 

package MXNet version 1.3.0 to implement ECG12Net. The settings used for the training model were as 

follows: (1) Adam optimiser with standard parameters (β1 = 0:9 and β2 = 0:999) and a batch size of 36 for 

optimisation; (2) initial learning rate set at 0.001 and lowered by 10 three times when validation loss plateaued 

after an epoch; and (3) a weight decay of 10−4. Because the sampling rate of our machine is 500 Hz, our 12-lead 

ECG signal includes 12 numeral sequences with 5,000 digits. However, the standard input format of ECG12Net 

was a length of 1,024 numeric sequences. We randomly cropped a length of 1,024 sequences as input in the 



training process. During the inference stage, the nine overlapping lengths of 1,024 sequences based on interval 

sampling (X1 to X1024, X498 to X1521, X995 to X2018, X1492 to X2515, X1989 to X3012, X2486 to X3509, X2983 to X4006, X3480 

to X4503, and X3977 to X5000) were used to generate predictions and averaged as the final prediction. The 100th 

epoch model was used as the final model, and the model performance in the validation set was verified only 

once. 

 

Data augmentation                                                                          

A previous study reported severe overfitting in an atrial fibrillation detection task and suggested a series of data 

augmentations to improve model performance. In the current study, the problem of overfitting was due to the 

large number of parameters in the deep learning architecture (~3 million trainable parameters) relative to the 

sample size. The first step in tackling this issue was to resize the sequence length by adjusting heart rate. We 

randomly resampled a broader range of heart rates in a uniform distribution from 0.8 HR to 1.2 HR, where HR 

was the original heart rate for each sample. The second step was to randomly crop a length of 1,024 sequences 

as input. The third step was to add a random variable drawn from a Gaussian distribution with a mean of 0 and a 

standard deviation of 0.1. Fourth, time points were selected uniformly and at random, and the ECG signal 

values within a 50 ms vicinity of these points were set at 0. This method was called dropout burst. Finally, we 

set six random ECG lead sequences to 0 in the combined training step. We observed that the final DLM only 

used information from a few ECG leads to make a prediction and inferred that the model had ceased to learn 

features from the other ECG leads because it had perfectly predicted all the data in the training set. This 

approach forced the DLM to learn all the abnormal ECG leads. 

 

Model visualisation 

To interpret the network predictions, we conducted heatmaps to visualise the ECG rhythms and leads using 

class activation mappings (CAMs) and attention mechanisms based on the global average pooling (GAP) 

architecture in the last network, which was used at the end of each ECG lead. In addition, the various 



contributions each ECG lead made to the final prediction were weighted by the attention mechanisms, which 

were used to visualise the importance of each ECG lead. 

 

Summary of the research interests, model comparison and statistical methods 

The research interests, model comparison and statistical methods in this study are summarised in detail in 

Supplementary Table 2. 

 

Supplementary Appendix 2. Results  

The baseline characteristics of the cohorts 

The characteristics and laboratory data are shown in Supplementary Table 3. Patients in the validation cohort 

were significantly older, had more comorbidities, had impaired estimated glomerular filtration rates and alanine 

aminotransferase, lower cTnI, and higher glucose and low-density lipoprotein cholesterol levels than those in 

the development cohort. The development/validation cohorts consisted of 860/191, 559/138, and 

109,904/30,432 STEMI, NSTEMI, and non-AMI ECGs, respectively. The LAD and RCA were the most 

commonly identified IRAs in STEMI. Patients with STEMI were more likely to be male, to be overweight, to 

have prior coronary artery disease (CAD), and to have higher cTnI and more impaired lipid profiles than those 

in the non-AMI group. Patients with NSTEMI were more likely to be male, be older and have prior CAD and 

more comorbidities, higher cardiac biomarkers, and more impaired lipid profiles than those in the non-AMI 

group.  

 

ECG lead-specific analysis 

The ECG lead-specific analyses for the detection of STEMI and the corresponding IRA are shown in 

Supplementary Figure 4. ECG leads were specifically analysed for the detection of STEMI in the hypothetical 

real world. Leads III, V2, aVL, and V3 demonstrated better performance than the other leads for the detection 

of STEMI, with the AUCs of 0.913, 0.913, 0.911, and 0.908, respectively. For the detection of the IRA of 

STEMI, lead-specific ROC curve analysis on the IRA of STEMI demonstrated that the best performances for 



the LAD were V4, V2, and V3 with AUCs of 0.970, 0.955, and 0.953, respectively, and those for the RCA were 

aVL, lead III, and aVF with AUCs of 0.995, 0.978, and 0.966, respectively. 

 

Discussion 

With the aid of the first recorded cTnI, the DLM exhibited an excellent diagnostic yield with an AUC of 0.978 

for NSTEMI detection, which was significantly better than those of the DLM or cTnI alone, with AUCs of 

0.877 and 0.949, respectively. The universal diagnosis of NSTEMI is derived from the clinical presentation, 12-

lead ECG, and cardiac troponin levels. To date, biomarker measurement for myocardial injury, preferably high-

sensitivity cardiac troponin, was mandatory in all patients with suspected NSTEMI due to its high sensitivity 

and specificity [4]. However, several concerns should be considered in current practice. First, the guidelines 

suggest that the second cardiac troponin assessment be performed 1-3 hours after the first blood test in 

unconfirmed cases. Repeated time-consuming laboratory tests might delay the diagnosis. Second, cardiac 

troponin levels might be perturbed in some clinical conditions other than AMI. Combined with the information 

of the first recorded cTnI, the DLM allows rapid and powerful NSTEMI detection in patients at high or very 

high risk. 

 

Regarding NSTEMI detection, DLM showed less sensitivity than the cardiologists. Several points should be 

clarified. Among the 58 NSTEMI ECGs unrecognised by the DLM, there were several atypical ECG 

presentations, including intraventricular conduction disorders, ventricular hypertrophy, poor R wave 

progression, or baseline variants. Even experienced cardiologists could not identify some of these ECGs. 

Moreover, overdiagnosis of NSTEMI by ECG is commonplace in clinical practice, which may partially explain 

the high sensitivity and low specificity of the performance of the physicians in this study. With the aid of the 

DLM with its high specificity in the detection of NSTEMI, physicians could exclude NSTEMI early, which 

reduced subsequent lab tests, ED observation time and guided physicians to differentiate it from other diagnoses 

unrelated to AMI. As a result, it was worthwhile to increase the ECG training data along with the first-record 

cTnI to enhance the capacity of the DLM in NSTEMI detection in the future. 



 

 

 

 

 

Supplementary Figure 1. Architecture of the DLM.  

A) Electrocardiography (ECG) lead block with 80 trainable layers.  

B) The DLM integrated all the information from the ECG leads to make an overall prediction. The bold and 

coloured words denote the output dimensions of the layers and the black words signify the important role for the 

layers. The model constant K was equal to 32 for all the dense blocks and pooling blocks.  

BN: batch normalisation; Conv: convolution; FC: fully connected; ReLU: rectified linear unit 

 



 



 

Supplementary Figure 2. Performance rankings of infarct-related artery detection of STEMI among DLM, 

physicians and the Philips algorithm in the human-machine competition.  

Global performance rankings based on the 6-class kappa values. V(X) denoted the (V) visiting staff with (X) 

years of experience. The infarct-related arteries of STEMI were classified into the LMCA, LAD, RCA and LCx. 

LAD: left anterior descending artery; LCx: left circumflex artery; LMCA: left main coronary artery; RCA: right 

coronary artery   



 

 

 

 

Supplementary Figure 3. Performance comparison for anterior (LAD), inferior (RCA), and combined anterior 

and inferior (LAD+RCA) STEMI detection in the human-machine competition.  

The area under the receiver operating characteristic curve (AUC) was generated by the prediction of the DLM. 

The triangles, the square and the diamond denote the cardiologists, the emergency physician and the Philips 

algorithm, respectively. 



 

 

 

Supplementary Figure 4. ECG lead-specific analyses for the detection of STEMI, STEMI-LAD and STEMI-

RCA.  

The receiver operating characteristic (ROC) curves with the specificity on the x-axis and the sensitivity on the 

y-axis were generated by the DLM for the detection of STEMI and the corresponding IRA in the revised 

proportion of the hypothetical real world (STEMI = 0.1%, NSTEMI = 0.2%, and non-AMI = 99.7%). The 

controls were the non-AMI samples.  

AUC: area under the ROC curve 

 

 



 

 

 

 

Supplementary Figure 5. Univariate and multivariate logistic regression analysis of STEMI, and NSTEMI in 

the development cohort.  

The controls in all analyses were non-AMI samples. The adjusted variables included gender, age, body mass 

index, and all disease histories. The continuous variables were standardised by the mean and standard deviation. 

The units of each continuous variable were one standard deviation. 

 



 

 

Supplementary Figure 6. Comparison of the diagnostic value among additional demographic variables, cTnI 

and DLM in the validation cohort.  

The receiver operating characteristic (ROC) curves were generated from the logistic regression analysis using 

the development cohort. Patient demographic variables to predict (5A) STEMI and (5B) NSTEMI included 

gender, age, BMI, CAD, eGFR, and Hb. (5A) DLM vs DLM + Demographics vs DLM + Demographics + cTnI, 

p=ns; DLM or DLM + Demographics or DLM + Demographics + cTnI vs Demographics, p<0.0001. (5B) DLM 

vs Demographics, p<0.05; DLM + Demographics + cTnI vs DLM + Demographics, p=0.08.  

AUC: area under the ROC curve 

 



 



 

Supplementary Figure 7. The test examples of the detection of STEMI equivalents by the DLM.  

STEMI equivalents including de Winter sign, Wellens’ syndrome, posterior wall MI, ST elevation in lead aVR 

with diffuse ST depression, hyperacute T-waves and ST elevation in the presence of bundle branch block. The 

prediction rate of STEMI in each example of STEMI equivalent ECG by the DLM is shown in each figure. 

  



 

 

 

 

Supplementary Figure 8. The test examples of the detection of high take-off T ECG by the DLM. High take-

off T ECG including hyperkalaemia, benign early repolarisation, left ventricular hypertrophy, and Brugada 

syndrome. The prediction rate of STEMI in each example of high take-off T ECG by the DLM is shown in each 

figure. 

 

 
  



 

 

Supplementary Table 1. The definitions of AMI, STEMI, NSTEMI, non-AMI and non-STEMI. 

 
Groups Definition and inclusion in this study 
AMI AMI included symptoms of myocardial ischaemia, the ECG presentation and the elevated cTnI (above the 99th 

percentile of the upper reference limit of healthy individuals), which included both STEMI and NSTEMI 
STEMI AMI patients with ST-segment elevation on ECG who were validated by CAG 
NSTEMI AMI patients without ST-segment elevation on ECG who were validated by CAG 
Non-AMI Patients with a normal cTnI series during an ED stay who had neither STEMI nor NSTEMI 
Non-STEMI NSTEMI and non-AMI 

AMI: acute myocardial infarction; CAG: coronary angiogram; cTnI: conventional cardiac troponin I; ECG: 12-lead 

electrocardiogram; ED: emergency department; NSTEMI: non-ST-segment elevation myocardial infarction; STEMI: ST-segment 

elevation myocardial infarction   

 
 
 
 
 
 
 
 
 
Supplementary Table 2. The research interests, model comparison and statistical methods. 

 
Figures Purpose Comparison Methods 

Figure 1 

 

To compare the performance between the 

DLM and physicians in detecting STEMI by 

ECGs in the human-machine competition. 

STEMI vs 

non-STEMI 

AUC-ROC curve, PRROC curve with 

sensitivity (recall), specificity, and positive 

predictive value (precision). 

Figure 2 To compare the performance of STEMI 

detection among the DLM, the physicians 

and the Philips algorithm. 

DLM vs physicians, 

Philips algorithm 

The performance (kappa value) and 

consistency analysis. 

Figure 4A 

 

To compare the performance of the DLM, 

cTnI and the DLM plus cTnI in detecting 

STEMI in the validation cohort 

STEMI vs 

non-AMI 

AUC-ROC curve. 

Figure 4B 

 

To compare the performance of the DLM, 

cTnI and the DLM plus cTnI in detecting 

NSTEMI in the validation cohort. 

NSTEMI vs 

non-AMI 

AUC-ROC curve. 

AMI: acute myocardial infarction; AUC-ROC: area under the receiver operating characteristic curve; CAG: coronary angiogram; 

cTnI: cardiac troponin I; DLM: deep learning model; ECG: 12-lead electrocardiogram; NSTEMI: non-ST-segment elevation 

myocardial infarction; STEMI: ST-segment elevation myocardial infarction 
 
 



 

Supplementary Table 3. Corresponding patient characteristics and laboratory results of STEMI, NSTEMI, and non-AMI ECGs in the development and validation cohorts. 

 Development cohort   Validation cohort   p-value# 

 STEMI 

(n=860) 

NSTEMI 

(n=559) 

non-AMI 

(n=109,904) 

p-value  STEMI 

(n=191) 

NSTEMI 

(n=138) 

non-AMI 

(n=30,432) 

p-value   

STEMI location             

STEMI-LMCA 21 (2.4%)     3 (1.6%)      

STEMI-LAD 420 (48.8%)     105 (55.0%)      

STEMI-LCx 87 (10.1%)     11 (5.8%)      

STEMI-RCA 332 (38.6%)     72 (37.7%)      

Gender (male) 688 (83.8%) 420 (76.2%) 55,453 (50.5%) <0.001  150 (82.9%) 84 (62.2%) 15,484 

(50.9%) 

<0.001  0.369 

Age (years) 61.8±13.8 64.3±13.8 60.9±19.6 <0.001  62.9±14.6 65.9±13.7 62.6±20.2 0.165  <0.001 

BMI (kg/m2) 25.9±4.5 24.4±3.9 24.5±8.8 0.009  26.9±4.7 25.0±4.9 24.5±6.0 0.043  0.575 

Disease history            

CAD 197 (24.0%) 188 (34.1%) 20,275 (18.4%) <0.001  133 (73.5%) 95 (70.4%) 7,439 (24.4%) <0.001  <0.001 

HF 50 (6.1%) 66 (12.0%) 8,099 (7.4%) <0.001  21 (11.6%) 33 (24.4%) 2,972 (9.8%) <0.001  <0.001 

DM 176 (21.4%) 187 (33.9%) 25,429 (23.1%) <0.001  39 (21.5%) 50 (37.0%) 7,675 (25.2%) 0.004  <0.001 

HTN 249 (30.3%) 243 (44.1%) 42,081 (38.3%) <0.001  67 (37.0%) 83 (61.5%) 14,177 

(46.6%) 

<0.001  <0.001 

CKD 68 (8.3%) 101 (18.3%) 9,929 (9.0%) <0.001  8 (4.4%) 26 (19.3%) 2,332 (7.7%) <0.001  <0.001 

Hyperlipidaemia 198 (24.1%) 219 (39.7%) 30,087 (27.4%) <0.001  34 (18.8%) 53 (39.3%) 8,579 (28.2%) <0.001  0.007 

COPD 85 (10.4%) 62 (11.3%) 21,600 (19.7%) <0.001  24 (13.3%) 19 (14.1%) 7,090 (23.3%) <0.001  <0.001 

Laboratory test            

Na (mEq/L) 137.3±3.2 136.9±3.6 136.6±4.5 <0.001  137.1±2.7 135.9±3.4 135.8±4.7 0.005  <0.001 

K (mEq/L) 3.9±0.6 4.0±0.6 3.9±0.5 0.006  3.8±0.5 4.0±0.6 3.9±0.5 0.008  0.211 

eGFR (mL/min) 74.2±26.3 63.8±30.7 82.5±37.0 <0.001  74.2±26.5 64.3±37.4 81.0±35.0 <0.001  <0.001 

Cr (mg/dl) 1.3±1.3 1.9±2.2 1.3±1.6 <0.001  1.3±0.9 2.3±2.6 1.2±1.3 <0.001  <0.001 

CK (ng/mL) 389.8±650.7 296.1±325.4 131.7±409.0 <0.001  348.9±597.0 252.5±310.7 122.5±306.9 <0.001  <0.001 

cTnI (ng/mL) 60.6±598.7 224.8±1,121.7 0.0±0.0 <0.001  4.8±16.6 2.7±6.5 0.0±0.0 <0.001  0.015 

WBC (103/ul) 11.1±3.6 8.8±3.0 8.9±4.5 <0.001  11.2±3.2 9.3±2.8 8.8±4.6 <0.001  0.125 

Hb (gm/dl) 14.6±1.9 13.2±2.4 12.9±2.3 <0.001  14.7±1.7 13.2±2.7 12.9±2.3 <0.001  0.120 

PLT (103/ul) 228.5±64.0 221.0±74.6 227.0±81.9 0.425  228.4±90.7 216.5±52.9 210.1±74.9 0.015  <0.001 

GLU (gm/dl) 193.9±85.3 219.4±126.3 198.7±114.8 0.631  166.0±13.1 215.8±85.5 241.1±128.5 0.462  <0.001 

AST (U/L) 54.0±85.3 45.6±104.5 32.6±81.3 <0.001  51.3±65.0 36.4±37.1 33.0±91.3 0.075  0.590 

ALT (U/L) 41.3±73.4 34.2±78.9 32.8±93.1 0.215  44.6±21.3 39.0±40.6 79.0±200.9 0.762  <0.001 

TC (gm/dl) 172.0±40.9 168.4±37.5 148.8±47.7 <0.001  173.6±36.8 162.8±38.3 147.6±48.0 <0.001  0.081 

LDL (gm/dl) 111.4±33.7 106.8±33.8 89.7±36.3 <0.001  116.4±33.2 103.2±28.0 95.9±38.2 <0.001  <0.001 

HDL (gm/dl) 38.7±9.0 39.2±9.4 41.2±14.4 <0.001  41.5±10.4 35.3±9.8 42.0±15.0 0.007  0.295 

TG (gm/dl) 153.4±148.7 137.0±73.4 118.0±127.8 <0.001  120.3±55.8 157.7±96.2 116.6±160.7 0.043  0.354 

# The hypothesis test between the development cohort and the validation cohort.   

ALT: alanine aminotransferase; AST: aspartate aminotransferase; BMI: body mass index; CAD: coronary artery disease; CK: creatine kinase; CKD: chronic kidney disease; 

COPD: chronic obstructive pulmonary disease; Cr: creatinine; cTnI: conventional cardiac troponin I; DM: diabetes mellitus; eGFR: estimated glomerular filtration rate; GLU: 

glucose; Hb: haemoglobin; HDL: high-density lipoprotein cholesterol; HF: heart failure; HTN: hypertension; K: potassium; LAD: left anterior descending artery; LCx: left 



circumflex artery; LDL: low-density lipoprotein cholesterol; LMCA: left main coronary artery; Na: sodium; PLT: platelet; RCA: right coronary artery; TC: total cholesterol; TG: 

triglyceride; WBC: white blood cell count  

 


